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Preface

There are a great many textbooks on solid-state physics, condensed matter
physics, or materials physics. Each has specific points, perspectives, or foci, that
is, a purpose and an audience. There are, in fact, so many topics and principles
that could be covered in the broad field of solid-state physics, and it is surely
impossible to be comprehensive for a single, accessible text. Thus, each school of
thought must choose its own emphasis areas for its students from semiconductor
physics to soft condensed matter, and that is what we have done here.

In Foundations of Solid State Physics, we have presented what is essential for
us, the authors, in the field of emerging, exotic, novel materials. The reader
will quickly notice our passion for molecular solids and carbon-based systems
and the phenomena associated with them. Conducting polymers, carbon nan-
otubes, nanowires/nanoparticles, two-dimensional plates of dichalcogenides,
perovskites, and organic crystals are systems understood largely through their
dimensionality, topological connectedness, and quantum confinements. So
studies of these materials expand our most fundamental solid-state models, and
they offer to us the basic challenge of connecting to deeper physical insights. In
our writing, we have tried to embrace that invitation and challenge. We intend
our text for the advanced undergraduate or beginning graduate student. But
researchers with interests in the areas of dimensionality in solids, organic or
molecular electronics, and molecular materials should also find our perspective
enjoyable.

We have chosen an unusual presentation style for the text. It is conversational,
and throughout the text there are italicized words and concepts. We intend these
as focus points where we want the reader to go outside of the text to supplement
their understanding of the concepts. So be ready when we return to these points
again and again. There are also a number of graphical components and historical
references intended to give discoveries, old and new, the context of their origins.
Finally, we expand upon specific topical areas through the use of open-ended
exercises. Not surprisingly we have encouraged the reader to look through the
references on which the exercises are based and therefore engage with the original
authors of the work. We hope our readers find this engagement approach mentally
stimulating, challenging, and fun. Think of the old adage from Ben Franklin: “Tell
me and I may forget, teach me and I may remember, involve me and I learn.”

Some may prefer to skip through the mathematical details, problems, and refer-
ences in a diagonal way to get to the physical models quickly. We believe that the
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text has been laid out in such a way as to accommodate this style of reading as well.
However, as a textbook, the presentation is intended as a two-semester detailed
discussion of the world of solid-state physics. Our core premise is that solid-state
physics is as fundamental in its nature as any field of physics, with unique models
and explanations of reality. Understanding these models and explanations brings
us ever closer to understanding the universe in its deepest complexities.

In preparing the text, two desks, one in Munich and one in Winston-Salem,
were filled with dozens of reference books. Of these we found that there was a
subset we particularly enjoyed, and we used them (coupled with experiences in
our labs, our own publications, and journal articles from outside our research
groups) to form an outline of our presentation. Some of these texts are getting
pretty old by now, and each expresses unique perspectives and passions for the
field. But it is always useful to see how others frame things.
1. Kittel: Introduction to Solid State Physics, now in its eighth edition. This is the

truth as it was revealed at UC Berkeley, wonderful for building a pedagogical
understanding at the most fundamental level using elementary models. This
book is simply hard to put down. Published by Wiley.

2. Ashcroft and Mermin: Solid State Physics first edition. While Kittel may be seen
a bit as “Moses on his mountain,” this text is the truth as it is known in Ithaca.
And it is frequently associated with things far more devilish. With more than
800 pages of electrical and optical properties in solids and one of the first texts
to categorize the different models of electron behavior in a crystal, this text
provides exquisite detail for every detail you might think of. It is a must read.
Published by Brooks Cole.

3. Ibach and Lüth: Solid-State Physics: An Introduction to Principles of Materials
Science now in its fourth edition, a more modern compilation of solid-state
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physics with plenty of experimental examples. This laboratory-centered treat-
ment is a favorite in many German universities. It certainly doesn’t take long
to see why. Published by Springer.

4. Chaikin and Lubensky: Principles of Condensed Matter Physics, a tour de force
of thermodynamics in the solid state. These authors make the daring leap of
dealing with novel systems in a fundamentally different way and help to define
many aspects of modern solid-state physics. From soft condensed systems to
liquid crystals and to phase transitions, you will find the foundations here.
Published by Cambridge University Press.

5. Harrison: Solid State Theory, the quantum chemistry of hybridization. The
focus of this treatment is on how specific bonding characters arise in crys-
tals. Special emphasis is given to the spatial mapping of bonds within the solid
and how they become bands. It is especially important for people studying
semiconductors or oxides. Published by Dover.

6. Marder: Condensed Matter Physics second edition, a graduate-level introduc-
tion that has gained rapid acceptance. This text has focused on basic calcula-
tion approaches to a wide range of physical phenomena in solid-state physics.
Though relatively young, the text is already a classic. Published by Wiley.

Our text started as a fourth edition of the now well-known One-Dimensional
Metals (ODM) by S. Roth in 1995 by VCH. Over the many years of teaching this
material to undergraduates and graduate students at Wake Forest University, we
have filled the margins of numerous copies of ODM with ideas, problems, and
notes. All of these are penciled in during conversations with each other and with
students. So it soon became apparent that ODM was set to evolve into more of a
textbook presentation and so came the current text. It has remained important for
us both, as authors, to retain the style, humor, and ease of access of that first text.
This reflects who we are as scientists and as people. But it is also necessary to rec-
ognize the comments and thoughts of students at Wake Forest University and the
Max-Planck-Institut für Festkörperforschung in Stuttgart, postdocs, and techni-
cal staff at both institutions, as well as our many colleagues that have read through
sections of the text. For better or worse, their words and ideas are reflected in its
pages as well.

It takes a long time to write a book even when there are two people doing it!
This always means there is one group that should receive the most credit for its
completion, and that group is our families. Thank you Richard, Jiangling, Lauren,
and Melissa for supporting us in this endeavor. Without such families as you,
textbooks would rarely be written at all.

Munich and Winston-Salem 2019 Siegmar Roth and Dave Carroll
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Introduction*

“To see a World in a
Grain of Sand...”

–William Blake

Carbon

12.011

6

C

“Dimensionality” and “atomic ordering in finite structures” seem like rather odd
principles by which to organize thoughts on solid-state physics. Indeed, this is
not a historical approach to understanding solids at all. However, in learning
solid state today, we must embrace the historical orthodoxy of crystal lattices,
phonons, and band structure, as well as a whole zoo of emerging exotic materials
that range from fullerenes to organic superconductors.

How do we understand two-dimensional (2D) dichalcogenides, atomically
layered permanent magnets, perovskites, topological insulators, conducting
polymers, quantum dots, graphene, glassy carbon, etc.? And what of the
low-dimensional analogues of orthodox collective behavior: charge density
waves, excitons, spin waves, and the like? We know these things “live” in/on
such low-dimensional structures. An interesting and instructive way to build a
framework is to begin with the normative behavior of a special atom, carbon,
and the dimensionality of the structures it makes. Why carbon? Because among
the elements it is about the most robust at making compounds and structures.
It is extremely flexible in how it chooses to arrange itself. Why dimension?
Well, lower-dimensional materials offer new approaches to technology, holding

*Historical Note: some of the hand-drawn images of the text have their origins in the very first edition
of One-Dimensional Metals. They are an interesting and important reminder of what our state of mind
was at a time when dimensionality was a new and mysterious science.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1 Introduction

the key to everything from quantum computers to new medicines. But most
importantly, it introduces the idea of “topology.”

Look, the traditional story goes like this. We begin our description of solids
with an infinite mathematical construction (the lattice) given by specific point
group symmetries. Onto the lattice points we attach some arbitrary set of atoms
(generally picking something found in nature). We calculate specified properties
based upon idealizations of how free the electron may be at each lattice point or
how free the motion of the atom at the lattice point may be. We adiabatically add
interactions between vibrations, carriers, etc. of the lattice to get more interesting
phenomena.

Our story, though, is like a tale of die Brüder Grimm1: carbon is the central
atom of the universe.2 It forms more compounds in more ways than any other
atom. Thus, other atomic systems deviate from carbon by breaking its norms of
symmetry. Beginning with large carbon molecules, we form nanometer struc-
tures. As we add, subtract, or substitute C atoms in the structure, we design
materials with properties that can be examined through the dimensional change
we have brought out. It isn’t quite a chemical point of view, and it isn’t quite
solid-state physics in its purest form. It is the type of conversation you hear in
working research labs across the world: complementary and an enjoyable com-
promise between the perspectives.

1.1 Dimensionality

The concept of dimensionality has been with us for a while, and it is an intellectu-
ally appealing concept. Speaking of a dimensionality other than three will surely
attract some attention. Some years ago it was fashionable to admire physicists
who apparently could “think in four dimensions” in striking contrast to Marcuse’s
One-Dimensional Man (Figure 1.1) [1]. Physicists would then respond with the
understatement: “We only think in two dimensions, one of which is always time.
The other dimension is the quantity we are interested in, which changes with
time. After all, we have to publish our results as two-dimensional figures in jour-
nals. Why should we think of something we cannot publish?”

This fictitious dialogue implies more than just sophisticated plays on words. If
physics is what physicists do, then in most parts of physics there is a profound
difference between the dimension of time and other dimensions, and there is a
logical basis for this difference [2]. In general, the quantity that changes with time
and in which the physicist is interested is some intrinsic property of an object.

1 The Brothers Grimm wrote fairy tales in the southern part of Germany around the early 1800s. In
1812 they published their first collection of folk tales, Kinder- und Hausmärchen (Children’s and
Household Tales). Their hometown was only a short drive from the author’s laboratory at the
borders of the Black Forest (where many of their tales were set). They are responsible for almost as
many nightmares as organic superconductors!
2 This is clearly a biased and self-indulgent statement, and should only be taken metaphorically.
Si-based life forms would certainly have a different opinion. Note that when we say “Si-life” we do
not distinguish between that life based on a processor and life based on Si-regulated metabolic
mechanisms.
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Figure 1.1 Marcuse’s man. Simultaneously with Herbert Marcuse’s book One-Dimensional
Man, which widely influenced the youth movement of the 1960s. W.A. Little’s paper on
“Possibility of Synthesizing an Organic Superconductor” was published, motivating many
physicists and chemists to investigate low-dimensional solids.

The object in question is typically imbedded in a three-dimensional (3D) space.
Objects themselves, however, may be very flat such as flounders, saucers, or oil
films with greater length and width than thickness. In materials such as graphene
or MoS2, thickness can be negligibly small – atomic. Such objects can be regarded
as (approximately) 2D. Now, if the intrinsic property that the physicist wishes to
study is somehow constrained in behavior, in direct correlation to the dimension
of the object, like a boat on the 2D surface of the sea is hopefully constrained to 2D
motion, then we say the property is expressing the dimensionality of the object.
In our everyday experience one-dimensional (1D) and 2D objects and 1D and 2D
constraints are more common than you might think. Indeed, low dimensionality
should not be particularly spectacular to our expectations. For this reason too,
it is reasonable to introduce non-integer, or fractal, dimensions [3]. Not much
imagination is necessary to assign a dimensionality between one and two to a
network of roads and streets – more than a highway and less than a plane. It is a
well-known peculiarity that, for example, the coastline of Scotland has the fractal
dimension of 1.33 and the stars in the universe that of 1.23.

Solid-state physics treats solids both as objects and as the space in which
objects of physics exist, e.g. various silicon single crystals can be compared with
each other, or they can be considered as the space in which electrons or phonons
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move. The layers of a crystal, like the ab-planes of graphite, can be regarded as
2D objects with interactions between them that extend into the third dimension.
But these planes are also the 2D space in which electrons move rather freely.
Similar considerations apply to the (quasi) 1D hydrocarbon chains of conducting
polymers.

1.2 Approaching Dimensionality from Outside
and from Inside

There are two approaches to low-dimensional or quasi-low-dimensional systems
in solid-state physics: geometrical shaping as an external approach and increase
of anisotropy as an internal approach. These are also sometimes termed top-down
and bottom-up approaches, respectively. For the external approach, let us take a
wire and draw it until it gets sufficiently thin to be 1D (Figure 1.2). How thin

Figure 1.2 Wire puller. An “external approach” to one-dimensionality. A man tries to draw a
wire through a mandrel until it is thin enough to be regarded as one-dimensional. Metallic
wires can be made as thin as 1 μm in diameter like this, but this is still far away from being
one-dimensional. Lithographic processes using focused ion beams and focused electrons can
produce some metal and semiconductor structures that are narrow enough to exhibit
one-dimensional properties (∼nanometers).
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will it have to be to be truly 1D? This depends a little on exactly what property of
the structure is desired to express low-dimensional behavior. Certainly, thin com-
pared to some microscopic parameter associated with that property. For example,
for 1D electrical transport properties, the structure must have length scales such
that the mean free path of an electron or the Fermi wavelength is affected by
the physical confinement of the structure. We will discuss these concepts further
a little later on in the text. But surely the meaning is clear: some fundamental
aspect of an internal object responsible for the phenomenon of interest must be
dramatically altered by its localization within the structure.

Technology today has made it possible to approach such sizes using methods of
lithography as well as chemical assembly. Lithography is the top-down approach
to creating confining structures as it whittles away material until only very small
structures remain. Chemical assembly is the “bottom-up” approach, and it forms
the structure through chemical reactions. The two approaches offer very different
properties to the nanoscale structure created, both in terms of atomic ordering
and control over object placement.

To achieve “one-dimensionality” does the wire puller in Figure 1.2 have to draw
the wire so extensively that it is finally to become a monatomic chain? Well, the
Fermi wavelength, a fundamental property of the carrier electron responsible for
conductivity, becomes relevant when discussing the eigenstates of all the elec-
trons of the structure. If electrons are confined in a box, quantum mechanics tells
us that the electrons can have only discrete values of kinetic energy. The energetic
spacing of the eigenvalues depends on the dimensions of the box – the smaller
the box the larger the spacing (Figure 1.3):

ΔEL = h2∕2m(π∕L)2 (1.1)

whereΔEL is the spacing, L is the length of the box, m is the mass of the electrons,
and h is Planck’s constant. For a box containing multiple electrons, the Fermi
level is the highest occupied energy state (at absolute zero). The wavelength of
the electrons at the Fermi level is called the Fermi wavelength. At finite temper-
atures, if the energy difference between levels is much larger than the thermal
energy (ΔEL ≫ kT), there are only completely occupied and completely empty
levels (not accounting for spin). A thin wire is a small box for electronic motion
perpendicular to the wire axis, but it is a very large box for motions along the wire.
Hence, in two dimensions (radially), it represents an insulator, and in one dimen-
sion (axially), it is a metal! This is simply because the ΔEradially ≫ kT whereas
ΔElengthwise ≪ kT .

If there are only very few electrons in the box, the Fermi energy is small and the
Fermi wavelength fairly large. For real materials, these are the electrons that can
participate in bonding–antibonding orbitals. This is the case for semiconductors
at very low doping concentrations. Wires of such semiconductors are already 1D
if their diameter is on the order of hundreds of Ångstroms.

Such thin wires can be fabricated from silicon or from gallium arsenide by
lithographic techniques, and effects typical for 1D electronic systems have been
observed experimentally [4]. Systems with high electron concentrations have to
be considerably thinner if they are to be 1D. It turns out that for a concentration
of one conducting electron per atom, we really need a monatomic chain!
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Figure 1.3 Electrons in small and large boxes and energy spacing of the eigenstates. This is an
example of dimension based on confinement.

Experiments on single monatomic chains are very difficult to perform, so a
bundle of chains is usually used. An example of such a bundle is polyacetylene
fiber, consisting of some thousands of polymer chains, closely packed with a typ-
ical interchain distance of 3–4 Å. Certainly there are some interactions between
the chains; however, in the case of small interchain coupling, it can be assumed
that the net sum of the individual chains determines the properties of the bundle
(Figure 1.4). The experiment becomes one of an ensemble of 1D chains.

Another method of geometrical shaping employs surfaces or interfaces
(Figure 1.5). The surface of a silicon single crystal is an excellent 2D system,
and there are various ways of confining charge carriers to a layer near the
surface. Actually, the physics of 2D electron gases are an important part of
today’s semiconductor physics [5], and most of the 2D electron systems are
confinements to surfaces or interfaces. The most fashionable effect in a 2D
electron gas is the quantized Hall effect or von Klitzing effect [6]. A 1D surface,
i.e. the edge of the crystal, is much more difficult to prepare and hardly of any
practical use. But one can argue that exposing a sample to a magnetic field would
be an excellent example of a 1D electronic system since electrons can be forced
into motion along specific paths defined by the crystal and the field. In fact,
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Figure 1.4 Experiments on individual chains are difficult to perform. But bundles of chains are
quite common, for example, fibers of polyacetylene.

reducing von Klitzing’s sample to “edge channels” is one way of explaining the
von Klitzing effect [7].

The internal approach to 1D solids comprises the gradual increase of
anisotropy. In crystalline solids the electrical conductivity is usually different
in different crystallographic directions. If the anisotropy of the conductivity is
increased in such a way that the conductivity becomes very large in one direction
and almost zero in the two perpendicular directions, a nearly 1D conductor will
result. Of course, there is no simple physical way to increase the anisotropy.
However, it is possible to look for sufficient anisotropy in already existing solids
that could be regarded as (quasi) 1D. Some anisotropic solids are compiled
in the next chapter of this book. How large should the anisotropy be to meet
one-dimensionality? A possible answer is: “Large enough to lead to an open
Fermi surface.”

The Fermi surface is a surface of constant energy in reciprocal space or momen-
tum space. While the Fermi surface and reciprocal space will be discussed in
detail later, for the discussion here, it is sufficient to imagine this surface as
describing all of the electron states within the solid that are available to take
part in electrical transport. For an isotropic solid, the Fermi surface is spherical,
meaning that electrons can move in any direction of the solid equally well.

If the electrical conductivity is large in one crystallographic direction and small
in the other two, the Fermi surface becomes disklike. The kinetic energy of the
electrons can then be written as E = p2/2m*, resembling the kinetic energy of
a free particle (p = momentum, m = mass), with the exception that the mass
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Figure 1.5 The crystal cutter. Crystal surfaces are excellent two-dimensional (2D) systems. The
cutter here tries to improve the crystal face by mechanical polishing, but the qualities
achieved by this method are not sufficient for surface science. Surface scientists cleave their
samples under ultrahigh vacuum conditions and use freshly cleaved surfaces for their
experiments – leaving large 2D planes of atoms. Another approach is to use highly oriented
and polished crystals that are then sputtered with high current ion beams and annealed at
high temperatures to reform the surface.

has been replaced by the effective mass m*. The effective mass indicates the ease
with which an electron can be moved by the electric field. If the electrons are
easy to move, the conductivity is high. Easy motion is described by a small effec-
tive mass (small inertia), and p must also be small to keep E constant. If it is
infinitely difficult to move an electron in a specific direction, its effective mass will
become infinitely large in this direction, and the Fermi surface will be infinitely
far away. However, the extension of the Fermi surface is restricted: if the Fermi
surface becomes too large in any direction, it will merge with the Fermi surface
generated by the neighboring chain or plane (“next Brillouin zone” in proper
solid-state physics terminology) assuming this hypothetical solid is made up of
stacked structures of some sort. This merging “opens” the Fermi surface, similar
to a soap bubble linking with another bubble (Figure 1.6).

1.3 Dimensionality of Carbon: Solids

As promised, we now want to put these structures in the context of carbon. But
again, why carbon? How will it be different from other atoms? Let’s contrast
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Figure 1.6 Open Fermi surfaces, analogous to merged soap
bubbles, as a criterion of low dimensionality. The Fermi
surface belongs to a solid that is essentially
two-dimensional. The solid will have no electronic states
contributing to electrical conductivity along the axial
direction but will easily conduct radially, normal to the axis.

it for a moment with a similar element silicon – the basis for much of today’s
technology. Silicon is unique among solids [8]: it is the most perfect solid pro-
ducible. That is, there are fewer imperfections in a silicon single crystal than
there are gas atoms in ultrahigh vacuum (per unit volume). It is the solid we
know most about, and it is the solid that has largely influenced the vocabulary
of solid-state physics. Carbon is located directly above silicon in the periodic
table of the elements, and just as silicon is outstanding among the solids, car-
bon is outstanding among the elements. Carbon forms the majority of the known
chemical compounds. Much of organic chemistry simply involves arranging car-
bon atoms (with hydrogen not having any specific properties but just fulfilling
the task of saturating dangling bonds). In our context, carbon has the remarkable
property of forming 3D, 2D, 1D, and zero-dimensional (0D) solids. This is related
to the fact that carbon is able to form single, double, and triple bonds. This ability
of carbon to form many types of bonds, at many different bonding angles, sets
it aside from silicon in another important way; it leads to biology rather than
technology.
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1.3.1 Three-Dimensional Carbon: Diamond

Beginning with an example from silicon, diamond appears as the trivial solid
form of carbon (Figure 1.7). Diamond has similar semiconducting properties to
silicon. Both substances share the same type of crystal lattice. The lattice param-
eters are different (a = 5.43 Å in silicon and 3.56 Å in diamond), and the energy
gap between valence and conduction band is larger in diamond, 5.4 eV, compared
with 1.17 eV in silicon. Diamond is more difficult to manufacture and more diffi-
cult to purify than silicon, but it has better thermal conductivity and can be used
at high temperatures. Since the costs for raw material change the final price of
electronic equipment only slightly, some people believe that diamond is the semi-
conductor of the future. Silicon is typically used with added dopants to modify
its electronic behavior. Doping diamond has proven to be far more difficult how-
ever. Here we mean doping to be a substitution of a lattice atom: in Si it would
be Si, and in diamond it would the substitution of a C, with another atom of dif-
ferent valency. The substituted atom adds carriers to the materials, changing its
electrical properties. However, the potential dopant atom must fit into the lattice
in some way, and this process must be better understood in diamond before the
realization of high-quality diamond electronics.

Sometimes, semiconductors and metals are mentioned interchangeably in this
book although they are quite different. The reason stems from the idea that a
doped semiconductor can be regarded as a metal with low electron concentra-
tion. Here, “metal” is essentially used as a synonym for “electrically conductive,
solid-state system.”

1.3.2 Two-Dimensional Carbon: Graphite and Graphene

In diamond the carbon atoms are tetravalent, that is, each atom is bound to
four neighboring atoms by covalent single bonds. Another well-known naturally
occurring carbon modification is graphite (Figure 1.8). Here all atoms are triva-
lent, which means that in a hypothetical first step only, three valence electrons
participate in bond formation and the forth valence electron is left over. The
trivalent atoms form the planar honeycomb lattice, and the residual electrons

616 pm

Figure 1.7 The diamond lattice. The diamond lattice can be seen as a “wavy” set of carbon
planes connected together by carbon–carbon bonds.
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Figure 1.8 The graphite
lattice. A layered structure
with very little interlayer
interactions; graphite can
have high in-plane
conductivity of carriers and
heat.

670 pm

are shared by all atoms in the plane similarly to the sharing of the conduction
electrons by all atoms of a simple metal (e.g. sodium or potassium). The various
graphite layers only interact by weak van der Waals forces. In a first approxi-
mation graphite is an ensemble of nearly independent metallic sheets. In pure
graphite they are about 3.35 Å apart but can be separated further by intercalat-
ing various molecules. Charge transfer between the intercalated molecules and
the graphitic layers is also possible. Graphite with intercalated SbF5 shows an
anisotropy of about 106 in electrical conductivity, conducting a million times bet-
ter within a layer than between layers.

Diamond is a semiconductor and graphite is a metal (or semimetal). In dia-
mond there are very few mobile electrons; in an undoped perfect diamond single
crystal at absolute zero, there are exactly zero mobile electrons; and in graphite
there are many, one electron per carbon atom. This difference is not due to dimen-
sionality (three in diamond and two in graphite) but to single and double bonds.
Several attempts have been made to build 3D graphite [9]. Theoretically it seems
possible [10], but practically it has not yet been achieved.

Of course, since the layers of graphite are very weakly bound together, it is
rather easy to separate them mechanically to form graphene – a single sheet of the
honeycomb lattice. This lattice is truly 2D, since there is nowhere else for the elec-
trons to go except upon the sheet that essentially defines their “world” for them.
Notice though that this 2D sheet “samples” the 3D world in which it lives. If one
takes the sheet and bends it in the third dimension while applying a field across it,
one can induce phase accumulation in the wavefunction of its electrons – Berry’s
phase, which comes from the geometrical intersection of the 2D and 3D worlds.
Graphene has been studied extensively over the last few years, and transport in
graphene led to the 2010 Nobel Prize in Physics [11]. By numbers, the density of
graphene is 0.77 mg/m2. Its breaking strength is 42 N/m, the electrical conduc-
tivity is 0.96× 106 Ω−1 cm−1, and thermal conductivity is 10 times greater than
copper. We will return to graphene in later chapters.
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1.3.3 One-Dimensional Carbon: Cumulene, Polycarbyne, and Polyene

Carbon has an amazing ability to bond to itself in multiple ways. So “1D carbon”
comes in several varieties. Using double bonds one can image a monatomic chain
as Figure 1.9. (There are no dangling bonds in cumulene and in polycarbyne.) This
substance is called cumulene; the name refers to the cumulative (meaning consec-
utive) double bonds. Any organic chemist will tell you that double carbon bonds
can be isolated (separated by single bonds), conjugated (in strict alternation with
single bonds), or cumulated (placed adjacent to each other) for a wide variety of
compounds.

Cumulene has been synthesized for chains 5–10 carbons long [12]. While such
long molecules are interesting, they fall a little short of a 1D wire, and polymeric
cumulene has not been synthesized. Indeed, quantum chemistry predicts poly-
carbyne, an isomeric structure in which triple bonds alternate with single bonds,
is preferred over cumulene. Polycarbyne is shown in Figure 1.10, and it is of
particular interest to space scientists since it occurs in interstellar dust, mete-
orites, and in supernova remnants. It also is seen in trace amounts within natural
graphite [13].

If we accept the simplification that in carbon compounds, hydrogen atoms just
have the purpose of saturating dangling bonds (making them non-active) and
that otherwise they do not contribute to the physical properties of the material,
cumulene and polycarbyne are not the only 1D carbon solids. From this point of
view, all polymers based on chain-like molecules are 1D.

Let’s learn some organic chemistry. On naming conventions, the ending “-yne,”
as in polycarbyne, is used to indicate triple bonds. The ending “-ene” stands for
double bonds and “-ane” for single bonds. A polyane is shown in Figure 1.11. (To
add a little confusion to the subject, this substance is typically called polyethy-
lene, ending with “-ene” instead of “-ane.” The reason is simply that the names of
polymers are often derived from the monomeric starting material, which in this

C C C C C C- - - - - -

Figure 1.9 One-dimensional carbon example one: cumulene.

C C C C C C

Figure 1.10 One-dimensional carbon example two: polycarbyne.
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Figure 1.11 Polyethylene, as we might
imagine the (a) polymerization of ethylene
and (b) arrangement of bonding.
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Figure 1.12 Polyacetylene, the prototype
polyene, the simplest polymer with conjugated
double bonds.
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Figure 1.13 Polyacetylene using a simplified notation.

case is ethylene, H2C=CH2. Here the monomer contains a double bond, but dur-
ing polymerization the double bond breaks to link the neighboring molecules.)
Polyanes are insulators and of less interest in the context of this book. (Insulators
are large bandgap semiconductors. Because of the large bandgap, it is difficult
to lift electrons into the conduction band, and therefore the number of mobile
electrons is negligible.)

Figure 1.12 shows polyacetylene, the prototype polyene, the simplest polymer
with conjugated double bonds. The structure shown in Figure 1.12 is often sim-
plified to the one in Figure 1.13, since by convention carbon atoms do not have
to be drawn explicitly at the ends of the bonds and protons are neglected.

1.3.4 Zero-Dimensional Carbon: Fullerene

If we work our way down in dimensionality from volume-diamond to
plane-graphite and graphene to lines-polymers, we will finally end up at
the point as a 0D object. Do 0D solids exist outside of the obvious (the atom)? In
semiconductor physics the “quantum dot” is well known [14]. Historically, this
is a small disk cut out of a 2D electron gas. It is small compared to the Fermi
wavelength, so that the electrons are restricted in all three dimensions of space
(the 1D analogue to a quantum dot is often called “quantum wire”). Following
the discussion in Section 1.2, a quantum dot is a 0D object. The present state
of the art is to fabricate quantum dots containing more than 1 but less than
10 electrons. Because of the low electron concentration in semiconductors,
such quantum dots can exhibit quite large diameters, up to several hundred
Ångstroms. More recently, quantum dots have been fabricated as chemically
assembled nanoparticles, wherein the structure defines the confinement. Metal
nanoparticles of Au, Ag, Cu, etc. have been created using a variety of chemical
synthesis routes, and confinement of the electrons occurs at particle diameters
of only a few nanometers. Likewise, quantum dots made from semiconductor
materials such as Si, Ge, and compounds such as CdS, CdSe, PdS, etc. have been
created. Following the rules we have already discussed, these nanoparticles can
be many nanometers in diameter and still exhibit confinement because there are
fewer electrons in the “box.” The ΔE between these electron states can be quite
large, leading to some fascinating optical properties that are quite different from
their bulk counterparts.

Carbon can form quantum dots in a number of ways – nanodiamonds,
nanoplatelets of graphene, and others – as would be expected from carbon’s
ability to bond in different ways. However, the most famous of these quantum
dots of carbon in solid-state physics are the fullerenes [15]. The 1996 Nobel Prize
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Figure 1.14 A fullerene molecule. This
is an example of a C60, but much larger
cages can be made.

in Chemistry was given to R.F. Curl, H.J. Kroto, and R.E. Smalley for their role in
the discovery of this class of molecules. Under certain conditions, carbon forms
regular, cage-like clusters of 60, 70, 84, etc. atoms. A C60 cluster is composed
of 20 hexagons and 12 pentagons and resembles a soccer ball (Figure 1.14),
all bonded together as in graphene. The diameter of a C60 ball is about 10 Å
and thus is considerably smaller than that of a semiconductor quantum dot.
However, in these carbon compounds, the electron concentration is higher than
in inorganic semiconductors: in a system of conjugated double bonds, there is
one π-electron per carbon atom! (More on π-electrons later.) In other words,
there are 60 π-electrons in a fullerene ball of 10 Å diameter, compared with
some five electrons on a 100 Å GaAs quantum dot. In quantum chemistry and
solid-state physics, 60 is already a quite large number (we are used to counting:
“one – two – many”). In fact, a 60-particle system is already a mini-solid, and a
fullerene ball plays a dual role in solid-state physics: it is a mini-solid. It can also
be a constituent of a macro-solid – fullerite.

We can study electronic excitations in the mini-solid and their mobility and
interaction with lattice vibrations. At the same time it is possible to examine
unexpected transport properties of the macro-solid, like superconductivity [16],
photoconductivity, and electroluminescence [17]. Figure 1.14 shows the graphic
representation of a fullerene mini-solid. Figure 1.15 schematically indicates the
fullerene macro-solid.

1.4 Something in Between: Topology

Conceptually, we might conceive of a solid that is a combination of dimensions.
Imagine, for instance, a single graphene sheet described in the section on
graphite. Roll this conductive sheet into a seamless tube in which each atom
is threefold coordinated as in the sheet. When the diameter of such a tube is
between 14 and 200 Å, we refer to the object as a carbon nanotube. For such
an object, the electron wavefunction is confined to boxlike states around the
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Figure 1.15 The fullerene crystal lattice: “fullerite.” These compounds have a rich chemistry.
They can be doped by placing atoms between the balls, inside the balls, etc.

circumference. Along the axis of the tube, the electrons move in essentially a
1D system. Normally, this would appear to be similar to the semiconductor
wires mentioned earlier. However, this circumference (or rolled-up) dimension
allows for a set of spiral-like classical trajectories of the electron as it moves
down the tube. In this way, if a 3D field (like a magnetic field) should penetrate
the tube, the phase of the electronic wavefunction would be altered, resulting
in Aharonov–Bohm effects. Thus, while the tube certainly has the character
of a 1D system, it also has a “little more.” It is clearly not quite 2D however.
For such systems, there is a topology that must be considered. That is to say,
the object is connected together in such a way as to introduce an additional
“dimensional” aspect. Here we mean a physical topology associated with a sheet
of atoms rolled into the third dimension from a 2D starting point. However, the
topological aspects of low-dimensional systems in general – or the way in which
their electronic states might be connected together to form closed manifolds
in space – will be a recurring theme. This is actually quite a natural outcome of
the whole idea of working with low-dimensional materials. By restricting spatial
dimension and confining the electronic wavefunction, we introduce boundary



16 1 Introduction

conditions that are necessarily related to the overall connectedness of the object
doing the confining.

1.5 More Peculiarities of Dimension: One Dimension

Aside from topological effects, when working with low-dimensional structures,
what should we expect? Theory predicts that strictly 1D systems (for instance)
will behave so unusually that the word “pathological” is often used. And if real
systems appear less pathological than predicted, this is because real systems are
only quasi and not strictly 1D. Real systems differ from ideal systems by having
chains of finite rather than infinite length, sheets of finite area. In addition, the
chains and sheets show imperfections such as kinks, bends, twists, or impurities.
They are contained in an environment other than perfect vacuum, with neighbor-
ing structures at a finite distance and thus a nonzero interaction between them.

So, if you have ever followed a slow truck on a narrow mountain road, you
have painfully experienced a very important aspect of one-dimensionality: obsta-
cles cannot be circumvented! (Figure 1.16). A rather famous demonstration of 1D
conduction studied by solid-state physicists is that of the monatomic metal wire.
If one takes a very large number of gold atoms and places them very close to
each other so as to form a wire, then the transmission of an electron down this
wire is rather easily calculated. Now, we offer a very subtle change to this wire
and replace in its center one gold atom for one silver atom and recalculate the

Figure 1.16 The road to Kirchberg. A very important aspect of one-dimensionality is that
obstacles cannot be circumvented.
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Figure 1.17 Bond percolation demonstration on a two-dimensional grid, where bonds are
successively cut in a random way. Source: After Zallen 1983 [19].

transmission probability of the electron traveling its length. What is found is that
even for very small variations in the periodic atomic potential, reflections of the
electron wave on the wire become large [18].

Another more sophisticated conceptualization of dimensional restriction can
be made in terms of percolation. Percolation means macroscopic paths from
one side of the sample to the other and the threshold for bond percolation in
one dimension is 100%! Such macroscopic paths are necessary, for example, for
electrical conduction. The concept of bond percolation is quite different in two
dimensions as demonstrated by a grid (Figure 1.17) [19] where bonds are cut
at random. In this 2D square lattice, a few cuts yield little change in sample’s
conduction properties. In particular, the conductivity drops only slightly due to
the appearing holes. When 50% of the bonds are cut randomly, no path is left
that connects one side of the sample to the other, and the conductivity must be
zero. The percentage of intact bonds necessary to establish macroscopic paths is
the percolation threshold. The higher the dimensionality of the sample, the lower
the percolation threshold. For a 1D system the threshold – quite simply – is
100%: if we cut one bond, the sample consists of two disconnected pieces.

Another trivial aspect of 1D systems is the low connectivity. Each atom is
connected to two other atoms only: one to the left-hand side and one to the
right-hand side. In 3D solids there are connections to neighbors in the back
and front as well as to neighbors above and below. Connectivity is a topological
concept. Chemists usually speak of the coordination number, the number of
nearest neighbors. In a 1D chain the coordination number is 2.

A consequence of the low connectivity of 1D systems is the strong
electron–lattice coupling. If bonds are completely broken, a 1D system separates
into two pieces. Usually complete breaking of bonds does not happen, however.
Often bonds are only partially cleaved; for example, only one component of the
double bond in the system as in Figure 1.9 or Figure 1.13 is broken. In chemical
terms, this means that a bonding state is excited to form an antibonding state. In
semiconductor physics it would be described as an electron being lifted from the
valence band into the conduction band. Such manipulation of valence electrons
is quite common in semiconductors, and it is the first step for photoconductivity
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and photoluminescence. In a 3D semiconductor like silicon, the transfer of an
electron from the valence to the conduction band creates mobile charge carriers
(the electron in the conduction band and the “hole” left behind in the valence
band), but it does not change the arrangement of the atoms in the crystal. This is
due to the high connectivity of the silicon lattice, where breaking or weakening
one bond has not much effect. In low-connectivity 1D systems, where each atom
is held in place by two neighbors only, each change in bond strength leads to
a large distortion of the lattice. In conjugated polymers, the lattice distortion
shows a change in bond length when a double bond is partially broken to yield a
single bond.

With strong electron–lattice coupling, the electrons moving in the solid creates
a large distortion that polarizes the lattice. If the effect is distinct enough, the
electrons receive a new name: polarons – that is, the charge plus the distortion.
Depending on the strength of the coupling and the symmetry of the lattice, there
is a variety of quasiparticles resulting from electron–lattice coupling, the most
famous of which (and very typical for 1D systems) is the “soliton” [20]. We will
have a closer look at solitons and polarons a little later.

An important peculiarity of 1D systems for our discussions is band edge sin-
gularities in the electronic density of states. As we will see in later chapters, in a
solid, electrons cannot have any energy they wish (as they could have in vacuum).
There are only allowed energy regions (energy bands) separated by forbidden
gaps – energies they may not take on. The long-range ordering within the sys-
tem determines these forbidden and allowed energy bands for the carriers. The
density of states within a band of allowed energies is simply how closely packed
together the allowed states are in energy or the number of states per unit energy
interval. This density is not constant in a solid. The form of the density of states
function depends on the crystal structure, and surprisingly, near the band edge,
it reflects the dimensionality of the system. This is shown in Figure 1.18: in three
dimensions the density of state function N(E) is parabolic, in two dimensions it

1D

Dimensionality of a structure is
reflected in the structure’s density
of electronic states

2D

3D
E

N(E)

Figure 1.18 Density of states function at the band edge in three-, two-, and one-dimensional
electronic systems. Note the singularity that occurs in the one-dimensional case.
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is steplike, and in one dimension there is a square root singularity to infinity! In
real systems N(E) never reaches infinity, of course, but at least there is a very high
density of states.

One-dimensionality also differs from two- and three- dimensionalities in
random walk problems. In a higher dimension it is very unlikely that a random
walker will return to the place he/she started, whereas in one dimension this
happens quite often. Whether or not the random walker comes back to the point
of departure is important for discussing the recombination of photogenerated
charge carriers and thus for the time constants of transient photoconductivity
and of luminescence. Luminescent devices might turn out to be the most
important practical applications of 1D metals!

One-dimensional solids are particularly interesting in the context of fun-
damental studies on phase transitions. In fact, one motivation in the field of
1D conductors arises from the hope of finding the key to high-temperature
superconductivity. However, there is a famous theorem of Landau that suggests
phase transitions are impossible in 1D systems [21]: long-range order is unstable
with respect to the creation of domain walls, because the entropy term in the
free enthalpy will always overcompensate the energy needed to form new walls.
Whereas phase transitions are impossible, 1D systems might be “close” to a
phase transition even at fairly high temperatures. Fluctuations might “anticipate”
the phase transition and have already prompted speculation toward some tech-
nologically useful properties such as low-resistance charge transport. Perhaps
we could allow for “just a little bit” of three-dimensionality and thus obtain
a high-temperature superconductor? Organic superconductors are known,
but they are closer to two-dimensionality than to one-dimensionality. Their
superconducting transition temperatures reach 12 or 13 K (for fullerene even up
to 33 K), still far below the recently discovered inorganic oxide superconductors
with transition temperatures of 100 K and above [22].

1.6 Summary

In summary, dimension, connectivity, and symmetry show up in many different
ways for the solid-state scientist. We note in this chapter that the unusual char-
acter of carbon with the many structures it is able to make allows us to capture
a remarkable number of ways in which a solid can behave in reduced dimen-
sion. Basically, the flexibility allows this atom to make a solid in any dimension
we might want and with plenty of variants. All of these different allotropes have
radically different properties – all based entirely on the organization of the atoms.

As can now be seen, our discussions here will be aimed at introducing both
basic and advanced models of solid-state physics in the context of standard
chemistry, physics, and materials science. However, dimensionality and topology
will continue to be a unifying language for the materials systems discussed with
carbon-based solids as our inspiration. Remember, if you didn’t get the full
meaning of everything in italics the first time around, don’t worry; we will come
back to it again and again.
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Synthetic Metals
TC πσπσ 1d

Kyoto thank we

Figure 1.19 Haiku
from the ICSM 1986
closing ceremony
session in Kyoto
[23].

To complete the present chapter however, we reprint in
Figure 1.19 a “haiku” that was used during the closing cere-
mony of the International Conference on Science and Tech-
nology of Synthetic Metals in Kyoto [23]. This forum has
traditionally focused on the field of conducting polymers,
conducting small molecules, low-dimensional organic struc-
tures, and similar topics. From it, an international group of
scientists formed a community that continues today.

Exploring Concepts

1 Carbon: The original identification of carbon, known at the discovery of met-
alworking, has been lost to history. Its electronic ground state configuration
is [He] 2s22p2, and so the outer shell’s four electrons have s and p charac-
ters. Its melting temperature is 3550 ∘C (6420 ∘F) and boiling temperature
is 4827 ∘C (8721 ∘F). And carbon is the world’s primary fuel source (energy
storage medium). More specifically, the CHx unit is the basis for most of the
energy-dense fuels that our planet uses. From gasoline to coal to animal fats,
mankind has recognized the extraordinary utility of this sub-compound of
carbon and exploited it. Take a little time and compare the energy density
(J/kg) of animal fat, oil, coal, a Li-ion battery, and TNT. Remember that the
carbon compounds must be oxidized, so when computing the energy released
by mass, you must also include the weight of the oxygen to get the true energy
density. Many references fail to do this: so don’t just go to Wiki.

2 The Euclidean dimension of an object: Dimension is informally thought of, in
physics, as the minimum number of coordinates that are needed to describe
any point on or within the object. Likewise, n-dimensional spaces extend this
idea to include all of the possible coordinate values needed to describe any
n-dimensional object within the space. However, for our purposes, this isn’t
quite complete. For example, imagine a ball. It sits in a 3D space, but if con-
fined to the surface of that ball, we are decidedly 2D, and indeed it takes only
two coordinates (with reference to some axis set attached to the ball’s surface)
to describe every point on the ball’s surface (longitude and latitude, or 𝜃, 𝜑).
If something from a third dimension were to intersect our ball, let’s say it is
a 2D plane, as seen here, then notice that using the ball’s coordinates I could
describe only the points of intersection and not anywhere else on the plane
(Figure EC1.1). This is similar if I took the point of view of the plane. More-
over, notice that the intersection is a 1D object generally (or 0D in the case of
a point). But the set of points that describe the intersection have symmetries
reflected in both the flatness of the plane and the spherical nature of the ball.
So something else is required to describe the symmetry of the intersection
line, and that something is related to higher-dimensional objects.
This notion is made quantitative in the topology and geometry of manifolds.
So this exercise takes you outside the text a bit. First read up on topology
and geometry and describe how topology is a subdiscipline of geometry.
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Figure EC1.1 The apparent lower
dimensional intersection between two
objects of higher dimension.

2D

2D

How does the topology of an object pertain to our discussions here? What
is meant by the concepts of connectedness and compactness in topology?
Imagine that we could take a single layer of graphene and connect it to itself
along one edge such that it formed a Möbius strip. What do you think this
would mean for the electrons in/on the strip?

3 Si and C both form “hybridized” bonding orbitals: You will learn more about
these in the coming chapters. For now however, you can just think of them
as orbitals that have very specific directions associated with them. But C is
able to allow its bonds to take on a number of different bonding angles (it
bends), whereas this is more difficult for Si. Why would you think this might
be? What are the ramifications of this for the formation of compounds and
crystals? (You may need to journey outside of the text for this one as well.)

4 Euler’s rule: In simply connected, volumetric polyhedron structures (as in
Figure EC1.2), there is a simple rule that must be obeyed before the struc-
ture can be constructed and closed using regular polygons (remember regular
polygons means the 2D structures have many sides but the sides all have the
same length).
Now typically, a polyhedron is just one piece. It can’t be made up of two (or
more) separate parts stuck together at an edge or a vertex or something. It is
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Close simple polyhedra

V = # vertices

F = # faces

E = # edges

Face

Edge

Vertex

Figure EC1.2 Simply connected polyhedra are simply closed structures with no holes through
them.

a “box” and its faces will be made of regularly shaped polygons. But here is
the rub. To get that box to close properly without bending the polygons etc.,
then

V − E + F = 2; (known as the Euler rule)

(a) Using this rule, determine how may pentagons plus hexagons of carbon it
will take to construct a C60 molecule.

(b) Is it possible to make a C70? If so, how many pentagons and hexagons
would this require? Draw out what you think this might look like.

5 Fractals and dimension: Imagine that for any given Euclidean dimension, D,
we reduce the overall unit of measure by the factor 1/R. For R ∈ I we get the
schematic shown in Figure EC1.3. The measure of the object (that is its length,
area, or volume) increases as

N = RD

D = Log(N)∕Log(R)

This generalized notion of dimension D is known as the Hausdorff dimension,
and it doesn’t need to be an integer as it is in Euclidean geometry. Indeed, in
fractal geometries, it is fractional and can be used as an estimate of roughness.
This idea was eventually applied to the length of coastlines as in Figure EC1.4.
In fact, if we assume that the coastline’s “roughness” is reproduced at every
scale, say, it’s self-similar, then the processes of halving and then halving again
will converge to an estimate of the length of the coastline that is infinite. Thus,
such an estimate doesn’t make much logical sense. In other words, to describe
the coastline, we can’t just ask: “how long is it?” The answer to this ques-
tion doesn’t contain complete information. We need something more. L.F.
Richardson found a simple way to think of this as seen in Figure EC1.5.
The log–log plot linearity of length estimates in Figure EC1.5 is known
as the Richardson effect. Mandelbrot used this effectively to define a
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N = 27
N = 9

N = 3

2

3

1
Length

2
Area

3
Volume

Figure EC1.3 Schematic of the changing unit measure.
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R = 2

Length ~ 8.5 units

Length ~ 19 units

What is a coastline's length?
What is its dimension?

Figure EC1.4 Estimating the length of a coastline. Notice the top estimate gives a length of
roughly 8.5 rulers in length. Now we halt the length of the ruler. We get a length estimate of
the coastline of roughly 19 rulers, not the 17 rulers we might expect. Imagine halving the
ruler’s length yet again. It is easy to see that more of the “nooks and crannies” of the coastline
will be measured, making the estimate require more than twice the last ruler length again.
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Figure EC1.5 The relationship between the length of coastline estimate and the length of
scale used to make that estimate of the coastline is linear on a log–log plot. Indeed, this is true
for many naturally occurring structures in the universe, not just coastlines. Of particular
interest to us might be polymer lengths, surface areas of rough crystals, and more. Source:
Mandelbrot 1983 [3a].

dimensional characteristic to what was being estimated. He assigned
the term (1−D) to the slope. This makes the fitted functions look like
Log[L(s)] = (1−D)Log(s)+ b where D is the fractal dimension.
Notice in the replotted data above that the UK has a (1−D)∼−0.24. So,
D = 1− (−0.24) = 1.24, a fractional value. The coastline of ZA is much
smoother. So, the slope above is very nearly zero so D∼ 1 (i.e. almost a
Euclidean object or a line with a dimensionality of one). Generally, the
rougher the line, the steeper the slope will be. This yields a larger fractal
dimension, as though this highly squiggly line is trying to fill space in a nearly
2D way but doesn’t quite make it!
In this exercise you will generate line segments of your own coastline. These
are a set of line segments that are self-similar over different length scales.
The Example
The Koch curve is constructed conceptually by taking a line segment (the
initiator) and removing the middle third of the line. The gap is then filled with
two line segments that are equal in length to the segments on either side of the
gap. This is shown in Figure EC1.6. The new structure is called the generator.
So, starting with these two structures, the rule says to take each line and
replace it with four lines, each one-third the length of the original. Notice
that as we do this, the “length” of the curve gets greater and greater until it
eventually diverges.

(a) As we noted the Koch curve length increases with each iteration, until it
diverges. So this means we can only deal with it in a treatment as we show
for the coastlines above: Figure EC1.5. Estimate the lengths for the next
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Initiator

Generator

Iteration 1

Iteration 2

Length = 1

Length = 4/3

Iteration 3

Length = 16/9

Iteration 4

Length = 64/27

Iteration 5

Length = ?

Figure EC1.6 The Koch curve. Starting with the initiator (iteration 1) and the generator
(iteration 2), the curve can be continued infinitely.

couple of iterations following the example in Figure EC1.6. Plot them as
seen in Figure EC1.5 and then make a determination of the fractal dimen-
sion of the Koch curve.

(b) Write a short Maple, MATLAB, or Mathematica program to produce the
Koch curve and estimate lengths for iterations up to 20 or so. How fast is
the length diverging? How fast does the fractal dimension converge to a
limiting value and how close was your estimate in (a)?

(c) Now let’s see how to use this and why we have placed this in a solid-state
book. Go to a local atomic force microscope (AFM). Get a sample of frac-
tured glass or metal of appropriate size. Image this sample observing the
roughness in the image and in individual line scans (see user’s manual for
your machine). The software of most AFMs allow for a roughness analysis
to be made; you just hit a key and it gives a number. There are a number
of different ways to define and calculate this roughness, but generally the
machine will determine the mean or average variation from a horizon line
defined by the image itself and call this the roughness. However you might
suspect that there is some relationship between this number and that of
the fractal dimension, and with a few small limitations and caveats, there
is. Using MATLAB or one of the other symbolic math programs, write
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out a code to load one of the line scans into the program and then overlay
line segments to determine length in methods similar to that of the above
Richardson plot. From this determine the fractal dimension.

Now change the imaging conditions including the size of the scan area, the
speed of scanning, etc. (we are assuming you know what an AFM is here
of course). Repeat what you have just done. Is the answer different? Yes! Of
course it is. But do you know why? How many scales would I need to scan
over to ensure that I have a reasonable correlation between what we will call
surface roughness and fractal dimension?
Note to the reader about our problem sets: Ever notice how some texts end
their chapters with problem #1 derive equation 2.7… problem #7 repeat
problem #4 for all these different lattice parameters… and on they go. Well,
our problems don’t work that way. Following the lead of great works like
Kittel, we assume that our readers are living and breathing their desire to
become true solid-state physicists. So, they are not opposed to reaching
outside of the text to understand a concept through a reference or per-
forming an experiment or two to test our conjectures. Occasionally easily
accessed references just don’t provide enough discussion, and so we walk
you through that concept in the problem. In other cases, gems are lying upon
the ground waiting to be read and appreciated. We encourage the reader to
try all of our problems first alone and then within study groups and with
their instructors. They are not homework, they are home entertainment,
and they are opportunities to go well beyond what we have covered in
the text.
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2

One-Dimensional Substances

We begin by considering one-dimensional (1D) substances.1 A more traditional
approach might start with lattices in three-dimensional (3D), and we will talk
about them later. But here, we want to consider how 1D behavior is observed in
a variety of real solids, with a combination of elements, and that may or may not
include carbon. Interesting material structures also occur in zero-dimensional
(0D) or two-dimensional (2D) analogues of our 1D solid. So our discussion trans-
lates easily.

The 1D solid is particularly interesting because it is the least dimensional object
that connects two separate points in space. In other words, it practically defines
the field of transport in a solid: moving heat, electrons, and ions from one point
to another! Physicists, chemists, and material scientists have long been intrigued
by the idea of transport in a low-dimensional solid ever since the 1964 work on
superconductors by Little [1]. Little suggested synthesizing an organic supercon-
ductor by appropriately functionalizing polyacetylene, a polymer with conjugated
double bonds (Figure 1.12). For a simple picture, Little proposed replacing some
of the hydrogen atoms in polyacetylene by specifically designed substituents R, as
shown in Figure 2.1. In Little’s superconductor, electrons are supposed to move

1 This is done in a rather odd way. We will discuss these compounds using the full apparatus of
what is to come. So the reader may not have been instructed in all the language or concepts quite
yet. This is OK since what we are seeking to do is to set the tone and language that will be important
throughout the text. Keep the descriptions and italicized words in mind as you work through the
rest of the text, then refer back to these compounds as they become more and more clear to you. In
this way, the book is meant to be quite active in its use, like a conversation where you fill in as you
learn more.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 2.1 Little’s superconductor. Specially designed groups are attached to polyacetylene
chains so that excitations in the substituent Rs “pair” the electrons moving along the chain.

C2H5 N
CH N+

I–

C2H5
+N CH N

I–

Figure 2.2 Suggestion for a substituent R in
Little’s superconductor and rearrangement
of double bonds upon excitation.

along the conjugated polymer backbone and to excite the R substituents when
passing. Conceptually, one electron will deposit an exciton (or localized excitation
composed of a charge and an atomic distortion) in the substituent R group, and
the next electron will reabsorb the exciton. This “exchange” of excitons couples
with the consecutive electrons in the same way that phonons couple with elec-
trons in the Bardeen, Cooper, and Schrieffer (BCS) theory of superconductivity,
forming electron pairs [2]. If the coupling effect is strong enough, high supercon-
ducting transition temperatures might be achieved, perhaps even as high as room
temperature.

The substituent proposed in Little’s paper is shown in Figure 2.2. The arrow
indicates the change of the bond arrangement in the substituent during
excitation. Clearly, though, any number of species might be proposed for R.
The important aspect of the proposed mechanism is that it utilizes the 1D
nature of conduction together with the 3D nature (to prevent scattering) of the
charge-coupling group.

The hope of room temperature superconductivity has not yet been realized.
Moreover, no substance has been found in which superconductivity seems to
occur according to Little’s mechanism, though it might be argued that some
Type II, high-temperature superconductors present a similar doping geometry in
two dimensions. Little’s proposition, however, does suggest that such materials
and phenomena might be approached from a dimensional point of view: it
changed our perspective.

We note also that organic superconductors do exist, and they owe much to Lit-
tle’s concepts. These superconductors have transition temperatures considerably
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Figure 2.3 Historically, scientists attracted by exotics gradually formed a “community of
conspiracy,” moving like grasshoppers from one fashionable system to the next, a cooperative
behavior of their own. Their main forum of discussion, the International Conferences of
Science and Technology of Synthetic Metals (ICSM), reflects this topical schizophrenia in its
proceedings (as well as a notable desire to visit the whole of the planet). The ICSM meeting
proceedings can be found in Lecture Notes in Physics (1977, 1979), Chemica Scripta (1981),
Molecular Crystal Liquid Crystal (1982), J. Physique, Paris, Colloq. (1983), Molecular Crystal Liquid
Crystal (1985), and Synthetic Metals (1987–today).

below room temperature: the highest of which is Tc ∼12 K [3]. When one includes
fullerenes and their compounds, then Tc ∼18 K for K3C60 and 33 K for Cs2RbC60
[4]. These are essentially close-packed fullerene “balls” with alkali metal interca-
lated between them to donate charge. Here again, notice the delicate interplay
of dimension where superconducting pathways are restricted to the C60s of the
structure and charge is added from “outside” the structure by placing it intersti-
tially between the balls.

Cooperative or coupled behaviors such as superconductivity have been and, in
large part, are well understood and well established in more common solids, such
as lead, alkali metals, potassium chloride, and silicon. As we will see later, these
models are not so hard to follow, and they get mostly the right answers. But in
some solids, let’s call them exotics (for example, organic and molecular crystals,
liquid crystals, amorphous solids, low-dimensional solids); there is the opportu-
nity to push traditional models of material behavior to the extreme. This is exactly
what Little’s proposal did. Indeed, the approach has evolved into quite the sub-
field of physics, chemistry, and materials science as seen in the inset below and
Figure 2.3.
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The Exotic Scientists that Work with Exotics
While the exotic-solid community has been criticized for moving too quickly and
with too much fuss and hyperbole, it should be kept in mind that this work-style
introduces a degree of interdisciplinary intellectual exchange. In other words, by
necessity it yields a research community that readily combines physics, chem-
istry, and materials science, embraces novelty and discovery, and reaches beyond
the narrow confines of established disciplines. But this is of course only a philo-
sophical point.

For fun we note that a statistical evaluation of the literature on solitons at the
International Conference on Science and Technology of Synthetic Metals (ICSM)
shows that the response of the exotic community to the introduction of the soli-
ton moves through the community as a wave of publications that rises like a
solitary wave! Similarly, the total number of contributions to the ICSM increases
each year with the proceedings now exceeding 5000 pages and weighing nearly
20 pounds! Here, the plot of annual numbers of publications on solitons is laid
over Katsushika Hokusai’s wood carving View of Mount Fuji from a wave trough
in the open sea off Kanagawa (another solitary wave) for dramatic effect.
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2.1 A15 Compounds

A15 compounds (also known as β-W or Cr3Si structure types) are intermetallic
compounds such as V3Si and Nb3Sn, where one of the partners is a transition
metal. The chemical formula of these compounds is A3B (where A is the transition
metal and B can be any element), and the A15 structure is shown in Figure 2.4.
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- Stabilizing body center cubic sublattice

- Components of 1D wires through the volume

(a) (b)

Figure 2.4 Crystal structure of A15 compounds. (a) Filled circles are transition element atoms
(vanadium or niobium). They form three sets of mutually perpendicular chains. Open circles
symbolize Si, Sn, Ge, or Ga atoms. They mainly serve to support the structure. (b) The unit cell
of the structure showing the conduction pathways.

The essential feature of this structure is that the transition metal atoms are
arranged in chains. There are three mutually perpendicular sets of chains,
pointing to the three directions of 3D space. At first glance the structure seems
3D, and it takes some imagination to recognize the chains. The distance between
two vanadium or niobium atoms in the same chain is smaller than between
atoms of different chains. In addition the wave functions of the valence electrons
of vanadium are oriented in such a way that the in-chain overlap is considerably
larger than the chain-to-chain overlap.

The origin of the name A15 compounds is quite remarkable; it is the classifica-
tion of the crystal structure. This can be misleading however. Structures starting
with the letter A are designated to structures of elements, not of compounds.
A15 would then be the structure of the 15th modification. Since 15 is a fairly large
number and numbering probably would start on the simple side, we would expect
a complicated structure. The β-tungsten structure name for the A15 structure is
because for some time people thought that this was the structure of a compli-
cated modification of the element tungsten. Later it was shown that β-tungsten
is not elementary tungsten but actually a binary compound, a suboxide of tung-
sten, W3O. The wrong assignment in the early days is easy to understand. X-ray
diffraction is the most important tool for structural analysis, and the light oxy-
gen atoms with atomic number 8 are difficult to observe in the presence of the
heavy tungsten atoms with atomic number 74. However, in the case of 1D metals,
the crystallographic misinterpretation does not matter: we are only interested in
the sort of atoms that form those metallic chains, and these are the heavy atoms.
The light atoms mainly act as spacers.
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Why Are A15s Important?

A15 compounds are important as Type II superconductors, and for a long time
the highest superconducting transition temperatures were found among the A15s
(V3Si, 17 K; Nb3Sn, 23 K; V3Ga, 15 K). These compounds can remain supercon-
ducting even in the presence of a magnetic field of up to tens of Tesla. Even
today Nb3Sn is an important material for high field superconducting magnets.
Of course, it was speculated early on that the high transition temperature of the
A15 superconductors might be somehow related to the chain-like arrangement
of the transition metal atoms. From our discussion of dimensionality so far, this
might be expected.

In addition to superconductivity there is another interesting phenomenon
observed in A15 compounds: a structural phase transition from a cubic crystal
lattice to tetragonal lattice occurs. With reference to the crystallography of
iron–carbon systems (steel), this transition is often called martensitic transition.
At the martensitic transition, the chains of one set contract, whereas the chains
belonging to the other two sets expand. This transformation is accompanied by
a “softening” of lattice vibrations because some of the restoring forces (those
which stabilize the cubic crystal) fade at the transition. Perhaps these “soft”
lattice vibrations are responsible for the coupling of the conduction electrons
to form Cooper pairs and thus lead to superconductivity. In any case, there is
an interesting reciprocal action between the superconducting phase transition
and the martensitic phase transition: whichever occurs first upon cooling seems
to rule out the other. Exposure to a magnetic field modifies both transitions
[5]. (A review of A15 superconductors is available in [6]; for general reading on
superconductivity, [7] is recommended.)

In Figure 2.5 the soft lattice vibrations are illustrated for a superconducting V3Si
sample, near the martensitic transition and in a magnetic field. The velocity of
sound is plotted vs. the applied magnetic field. The polarization and propagation
direction of the sound waves are chosen so that the sound velocity is determined
by the restoring force that stabilizes the cubic structure. At the martensitic tran-
sition this force vanishes and the velocity approaches zero. Close to the marten-
sitic transition, the sample is superconducting. Superconductivity prevents the
martensitic transition. As the magnetic field is turned up, superconductivity is
gradually suppressed, and another effect of the magnetic field becomes domi-
nant. From there on, the velocity increases, i.e. the sample hardens, because the
magnetic field works toward preventing the martensitic transition.

The soft mode behavior of A15 compounds and its modification by supercon-
ductivity and by magnetic fields can be traced back to singularities in the elec-
tronic structure of these compounds (as we discussed earlier). Figure 2.6 shows
the density of states for V3Si. There is a wide band due to the s-electrons and
three narrow d bands. In later chapters we will discuss the electronic density
of states of a 1D solid that has square root singularities at the band edges, i.e.
the density of states approaches infinity with (E0 −E)−1/2. These singularities are
indicated in Figure 2.6a. In V3Si, there are three mutually perpendicular sets of
vanadium chains. In the cubic phase all chains are equivalent, and the singularity
occurs at identical energetic positions for all chains. In the tetragonal phase this
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Figure 2.5 Field dependence of the soft mode sound velocity in V3Si at various temperatures
Source: From Cheeke et al. 1973 and Dietrich et al. 1975 [5].

degeneracy is lifted, because in the compressed chains the bandwidth increases
and the band edge moves downward; in the expanded chains it moves upward as
shown in Figure 2.6b. If the Fermi level is close to the singularity in the density of
states, moving the singularity downward causes an overall reduction of electronic
energy. Thus the tetragonal phase is energetically favored. At high temperatures
there are also occupied states above the Fermi level, and the energy gain by the
tetragonal distortion of the lattice vanishes. Therefore, the cubic lattice is stable
at high temperatures.

The martensitic transition is a special case of the more general Jahn–Teller
theorem. It states that an electron shared by degenerate states can always gain
energy when the degeneracy is lifted and the electron moves into the lower state,
as schematically indicated in Figure 2.7. Another example of energy gain by sym-
metry breaking is the Peierls transition.
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Figure 2.6 Electronic density of states of V3Si in the cubic phase (a) and the tetragonal phase
(b). In the cubic phase the singularities at the band edges are threefold degenerate because all
three sets of V chains are identical. In the tetragonal phase this degeneracy is lifted, resulting
in a lowering of the Fermi level and, as a consequence, of the overall energy of the electrons.
Source: After Labbe 1960 [8].

Some sort of structure

This breaks the degeneracy in
electronic states, and when the
electrons occupy the new state
positions, their energy has been
lowered from the previous
configuration.

It starts with a
degenerate energy state
that is filled.

Jahn–Teller effect

But to lower its energy
it distorts itself.

Figure 2.7 Scheme of the Jahn–Teller effect: an electron shared by degenerate states gains
energy upon lifting degeneracy and descends to the lower state.
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Similarly, the occurrence of superconductivity also stabilizes the cubic phase.
Superconductivity creates a gap around the Fermi level; modifications of the band
structure within this gap do not affect the energy balance. The same argument
can be used to explain the lattice hardening induced by a magnetic field (in the
nonsuperconducting state). In a magnetic field Zeeman splitting of the electron
energies occurs. This Zeeman splitting alters the singularity in the density of
states already, so that a further modification by lattice distortion is less effective.

So the A15 compounds are structures composed of 1D wires running through-
out the volume with no interaction between them. The wires are held in place
by a sublattice of non-interacting atoms (as far as conductivity is concerned).
Yet this simple structure yields several important terms for our structural lexi-
con of materials: martensitic, Jahn–Teller, and Peierls – all features particularly
enhanced by lowering the dimension of a system. Moreover, its electronic struc-
ture also reflects its dimensionality.

2.2 Krogmann Salts

As mentioned, A15 compounds contain three perpendicular sets of chains.
Therefore the properties of the material exhibit cubic symmetry. If there was
only one set of chains, a much more drastic appearance of one-dimensionality
would be expected. Krogmann salts [9] are a good example for solids with only
one set of chains. The prototype of Krogmann salts has the stoichiometric
formula K2[Pt(CN)4]Br0.3 × 3H2O. This compound is commonly called KCP,
an abbreviation of kalium(potassium)tetracyanoplatinate. The essentials of the
structure are presented in Figure 2.8 [10]. Figure 2.8a shows a planar complex
of platinum surrounded by four cyano groups. Two of the electronic orbitals of
platinum are above the plane. In Krogmann salts such complexes are stacked
one on top of the other to generate a columnar structure (Figure 2.8b). For
the physicist the important part of the Krogmann salt is the metal chain. The
function of the cyano groups is to sterically support the structure. In addition to
Pt(CN)4 complexes, the crystals also contain alkali metals for electron balance,
with the “fine-tuning” achieved by halogen. The (001) and the (010) projections
of the elementary cell of KCP are shown in Figure 2.9 [10] (while we have not yet
covered this nomenclature for crystals, it is rather easy to imagine that we are
talking about rather high symmetry axis of the crystal here).

The one-dimensionality of Krogmann salts becomes apparent when looking at
KCP crystals under polarized light. If the light is polarized parallel to the direction
of the platinum chains, the crystal appears shiny and lustrous like metals. For
perpendicular polarization its appearance is dull as an insulator.

Why Are Krogmann Salts Important?
Some people say that in solid-state physics each effect has its proper substance
where the effect is best exhibited and most easily studied. If so – in A15 com-
pounds we discussed the martensitic transition – KCP is the substance belonging
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Figure 2.8 Electronic orbitals of platinum above and below the plane of the
tetracyanoplatinate complex (a); linear chain arrangement of platinum orbitals (b) Source:
From Wagner 1974 and Zeller 1973 [10].

to the Kohn anomaly. The Kohn anomaly is the precursor of another structural
phase transition, which is likely to occur in 1D solids: the Peierls transition.
The Peierls transition consists of pairing of atoms in a metallic chain. This
pairing – also an example of symmetry breaking, in this case of a translational
symmetry – results in the doubling of the elementary cell, containing one atom
before the phase transition and two after. Again there are restoring forces that
tend to keep the atoms of the chain equidistant and that become soft when the
phase transition is approached.

In A15 compounds the softening is observed for long-wavelength shear waves
(i.e. transverse polarization); in KCP it occurs for short-wavelength compres-
sional waves (with longitudinal polarization). The atom pairing – or more general,
the rearrangement of the atoms – corresponds to a compressional wave with
a wavelength twice the interatomic distance. Figure 2.10 shows the dispersion
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Figure 2.9 The Elementary cell of the Krogmann salt KCP (K2[Pt(CN)4]Br0.3 × 3H2O).
(a) Projection of the cell along the (001) crystal, (b) Projection along (010). The metallic chains
can be seen in both projections. (c) 3D rendition of the cell. Source: From Wagner 1974 and
Zeller 1973 [10].

relation for longitudinal vibrations in KCP. The dispersion relation is the depen-
dency of the vibrational frequency on the reciprocal wavelength, and the vibra-
tional frequency is a measure of the restoring force. A pronounced dip in the
dispersion relation of KCP can be noticed. A small dip is predicted for the vibra-
tion dispersion relation of any metallic solid, and it occurs where the wavelengths
of the vibrations match the wavelength of the electrons at the Fermi level. The
small dip is called the general Kohn anomaly. However in KCP, the Kohn anomaly
is giant, a dip that actually reaches to zero in frequency, corresponding to the
fading of the restoring force, and leads to a structural phase transition.

The velocity of long-wavelength lattice vibrations can be measured by ultra-
sonic techniques. This was done in the case of V3Si (Figure 2.5). To measure the
frequency of other vibrations and to sample the dispersion relation, neutron scat-
tering has to be employed. The data in Figure 2.10 were obtained in this manner.
(The above discussion is actually oversimplified: the giant Kohn anomaly does not
occur at a wavelength exactly twice the interatomic distance but at some more
general location in the reciprocal lattice, the exact position being determined by
the Fermi level and ultimately by the electron balance of the crystal due to the
alkali and halogen ions.)

So the Krogmann salt, and systems like it, introduces yet another concept into
our vocabulary: the Kohn anomaly – or a softening of vibrations along the 1D
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Figure 2.10 Longitudinal acoustic phonon branch in [001] direction of KCP showing the Kohn
anomaly as a large dip [11].

chains that compose the solid. We also see a dramatic reduction in isotropy in
the system since the chains run in only one direction for this system.

2.3 Alchemists’ Gold

A15 compounds contain three perpendicular sets of metallic chains, Krogmann
salts one, and – if searched – there will certainly also be a system with two sets.
Alchemists’ gold is such a system. Mercury and gold are direct neighbors in the
periodic system of the elements. Perhaps the alchemists thought that exposing
mercury to a very aggressive environment would convert it into gold. Arsenic
fluoride certainly is aggressive, and mercury can be brought into contact with
that substance. Figure 2.11 [12] shows the crystal structure of Hg2.86AsF6. The
mercury chains along the crystallographic a direction are clearly seen in this
figure. To see both sets of chains, in a and in b directions, Figure 2.12 is more
appropriate [13].

Why Is Alchemist Gold Important?
One of the curious properties of this substance is that the mercury in the chains
is said to be a “liquid,” whereas the AsF6 matrix is a well-defined solid. How does
a 1D liquid differ from a 1D solid? The usual definition given is that in solids and
in liquids, the distance between next neighbors is fixed, but in solids the angles
are also fixed. In a perfectly straight chain, there is no angular degree of freedom
anyhow; therefore the difference between solid and liquid must disappear. (Poly-
mer chains as in Figures 1.11 and 1.12 are not straight but zigzag, and hence they
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Figure 2.11 Crystal structure of “alchemist’s gold,” Hg2.86AsF6. The mercury chains follow the
crystallographic a and b axis. Source: After Kaveh and Ehrenfreund 1979 [12].
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Figure 2.12 Mercury chains in alchemist’s gold. Source: From Heilmann et al. 1979 [13].

can melt by rotation around the bonds.) If alchemists’ gold is cooled down, the
AsF6 matrix contracts and the crystal “sweats mercury”: small droplets of liquid
mercury appear on the faces. Upon heating these droplets are reabsorbed into
the bulk crystal.

From the fundamental science point of view, the mercury chains are quite inter-
esting. Bulk mercury is a superconductor. Will 1D mercury chains also become
superconducting? Is there an anisotropy to be expected, say, in the critical mag-
netic field? Will the transition temperature of the mercury chains be above or
below the Tc of bulk mercury? Or is there no transition to superconductivity
because of Landau’s interdiction of phase transitions in one dimension? Unfor-
tunately the escaped mercury makes experiments and their interpretation more
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difficult than expected. There is a transition to superconductivity around 4 K,
which coincides with the Tc of bulk mercury and apparently is due to supercon-
ductivity in the secreted droplets. There is a further transition around 2 K, where
the chains become superconductive.

2.4 Bechgaard Salts and Other Charge-Transfer
Compounds

In the Krogmann salts planar units are stacked to form columns, and the molecu-
lar orbitals overlap within these columns to form a 1D metal (Figure 2.8; overlap
of the d-orbitals of platinum). In a similar way the p-orbitals of carbon can be
forced to overlap by appropriate stacking of planar organic units.

Figure 2.13 [14] shows the structure of (TMTSF)2PF6, one example of Bech-
gaard salts. In Bechgaard salts organic donors are combined with inorganic
acceptors. The donors are fairly large planar organic molecules, in this case
tetramethylenotetraselenofulvalene (TMTSF). For everyday use the names of
these compounds are too lengthy and therefore usually abbreviated to some
combination of characteristic capital letters, for example, TMTSF. The organic
donors contain large numbers of conjugated double bonds. From the point
of view of a simpleminded physicist, they are just tiny flakes of graphene [15]
(Figure 2.14). The chiplets are stacked like honeycomb planes as in graphite with
a certain overlap of the p-electrons along the stacking axis. As a consequence,
electronic energy bands are formed. There is a certain amount of charge transfer
from the organic donor to the inorganic acceptor. Because of this charge transfer,
the electronic bands are only partially filled, and the Bechgaard salts are metallic.
At low temperatures some of the Bechgaard salts become superconducting;
others undergo a metal-to-insulator transition via the Peierls mechanism. As
in the A15 compounds, superconductivity often competes with other phase
transitions.

Figure 2.14 [16] shows another Bechgaard salt: (fluoranthenyl)2SbF6. This sub-
stance is famous for its very narrow electron spin resonance (ESR) lines, which

Figure 2.13 Crystal structure of the Bechgaard salt (TMTSF)2PF6. Source: After Jerome
1981 [14].
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Figure 2.14 Crystal structure
of (fluoranthenyl)2SbF6.
Source: After Mehring and
Spengler 1984 [16].
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make it a very sensitive magnetic field probe. The narrow ESR lines are due to
the delocalization of the electrons over the fluoranthenyl stacks and thus are typ-
ical for good 1D metals. Figure 2.15 [17] summarizes several organic donors, and
Figure 2.16 [17] organic acceptors.

In Bechgaard salts organic donors are combined with inorganic acceptors. It is
also possible to make all-organic charge-transfer salts by combining an organic
donor with an organic acceptor. A very famous example of this approach is
TTF–TCNQ. The crystal structure of this substance is shown schematically in
Figure 2.17 [18]. The TTF and the TCNQ units are arranged in a herringbone
pattern. Because of the tilt, the units are more densely packed with a larger
overlap between the molecules in a stack. It is interesting to note that both
TTF and TCNQ also crystallize separately, forming insulating solids. Thus,
it is the charge transfer from the TTF stacks to the TCNQ stacks that makes
TTF–TCNQ metallic.

Why Are Bechgaard Salts Important?

TTF–TCNQ shows many interesting solid-state phenomena, such as high elec-
trical conductivity and Peierls transition from metal to insulator, but it does not
become superconducting. In the 1970s superconductivity with a Tc as high as
58 K in some of the TTF–TCNQ samples was reported [19]. Of course, these
reports attracted an enormous amount of attention. In fact, the first report is the
paper most frequently cited of all papers ever published in Solid State Commu-
nications. Today, however, many scientists agree that these materials show tricky
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Figure 2.15 Organic donors. Source: After Hamann et al. 1981 [17].

artifacts caused by the high, strongly temperature-dependent anisotropy of the
electrical conductivity [20].

The use of heat treatment, various solvents and cosolvents, and other tech-
niques has become a major point of interest in working with these materials. The
larger the domains of perfect structure that can be created, without defects or
grain boundaries, the larger the mean free path of the carriers can become. This
has been tied to applications such as organic transistors as we discuss later on.
But for our purposes here, the 1D metals formed have been again added to our
vocabulary: charge-transfer complexes and metal–insulator transitions are two
ideas that are strongly expressed in such low-dimensional systems.
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Figure 2.16 Organic acceptors.
Source: After Hamann et al. 1981 [17].
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2.5 Polysulfurnitride

For the physicist, it may not be evident that sulfur and nitrogen can be arranged
in long chains in which sulfur atoms and nitrogen atoms alternate regularly.
But chemists know it can be done; the substance even crystallizes and shows
metallic properties. Furthermore, it becomes superconducting, although only at
extremely low temperatures (Tc = 0.26 K [21]). The structure of polysulfurnitride
(SN)x (also called polythiazyl) is shown in Figure 2.18 [22]. (SN)x can be doped,
for example, with bromine. Doping slightly increases the Tc, possibly due to the
Fermi level being moved to a position of a higher density of states, which is more
favorable for superconductivity.

Why Is Polysulfurnitride Important?
(SN)x is usually accredited with being the first conducting inorganic polymer.
Probably more important than the doping-induced Tc shift of (SN)x is that the
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Figure 2.17 Crystal structure of the organic charge-transfer salt TTF–TCNQ. Source: After
Friend and Jerome 1979 [18].
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Figure 2.18 Crystal structure
of the “inorganic polymer”
polysulfurnitride, (SN)x .
Source: After Möller 1976
[22].

doping of (SN)x might have stimulated the idea of also doping polyacetylene,
(CH)x, leading to a broadening of the field of conducting polymers generally.
Today, this polymer has a wide range of potential uses in industry such as in LEDs,
transistors, and batteries.
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Figure 2.19 Chemical structure of the
macrocyclic organic compound phthalocyanine
containing a transition metal in the center.
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2.6 Phthalocyanines and Other Macrocycles

When discussing the Bechgaard salts, we met with the concept of stacking of
graphene-like chiplets. The chemical structure of these macrocycles is shown
in Figures 2.19 and 2.20. Both substances contain conjugated systems with
18π-electrons in the “chip.” For a physicist, “three is already many and ten is
infinite.” So these macrocycles are infinitely large plates containing an infinite
number of electrons. Properly stacked they become graphite-like.

Why Are Phthalocyanines and Porphyrins Important?

The phthalocyanines and porphyrin both show a feature not present in graphite
platelets: there is a void in the center that can hold a transition metal atom. While
electrons may be well delocalized on the platelet, interactions between platelets
can proceed through this metal atom. So, the choice of the center metal allows for
a “fine-tuning” of the out-of-plane electronic properties of the stacked substance.

N

- - NN - -

N

Me

Figure 2.20 Chemical
structure of the
macrocyclic organic
compound porphyrin
with a transition metal
in the center.

The real “trick” is to get them to line up just right so charge
transport can occur.

A particularly interesting example is lead phthalocya-
nine. While the other phthalocyanines are planar, in this
case with the lead atom being so large, distortion of the
molecule occurs. It assumes the shape of a badminton
shuttlecock. Shuttlecocks should be easier to stack than
flat plates and have the tendency to align the center atom.
In addition, a special type of stacking fault might be
observed, as indicated in Figure 2.21. The conductivity
of a stack largely depends on the presence of such faults,
and fault generation could be used for switching [23].

To stack other planar macrocycles, the “shish kebab”
method has been developed: covalent connections are
placed between the central metals, and the macrocycles
are pinned on a polymer backbone like pieces of meat
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Figure 2.21 Stacks of lead phthalocyanine with stacking faults. Source: After Hamann et al.
1978 [23].
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Figure 2.22 Shish kebab polymer of metallophthalocyanine. Source: After Hanack et al. 1981,
1994 [24].

on a barbecue spit (with the spit being the line of metal atoms in the center)
(Figure 2.22 [24]).

2.7 Transition Metal Chalcogenides and Halides

M

X

Figure 2.23 Trigonal prism
of NbSe6 as basic structural
unit of low-dimensional
niobium selenide solids.

There is a large family of transition metal chalco-
genides and halides that can be described as con-
densed atomic clusters [25]. The basic structural
unit is a “cluster” consisting of a transition metal M
surrounded by group VI or group VII elements X.
Figure 2.23 shows a trigonal prism with six selenium
atoms at the corners and a niobium atom at the center;
Figure 2.24 presents a MoO6 octahedron.

These atomic clusters “condense” by sharing cor-
ners, edges, or faces. The case of prismatic conden-
sation is indicated in Figure 2.25, where edge-sharing
leads to the layered structure of NbSe2 (a 2D material)
and face-sharing to fibrillar NbSe3 (a 1D material).
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Figure 2.24 MoO6 octahedron as basic
unit of blue bronzes.

(a) (b)

Figure 2.25 Condensation of MX6 prisms to form layers by edge-sharing (a) or fibers by
face-sharing (b). Source: After Bullett 1985 [26].

NbSe2 is the representative of a large group of inorganic reduced-dimensional
solids, of which the 2D types are thoroughly discussed in a series of mono-
graphs [27]. Some of these layered solids are metals and superconductors; others
become metallic after “intercalation,” i.e. after insertion of organic or inorganic
molecules between the layers. But NbSe3 is also one of the most important inor-
ganic quasi-1D solids. It is particularly suited for studying charge density wave
phenomena.

An example of a corner-sharing cluster condensation (making a 1D wire) is
(MX4)nY, shown in Figure 2.26, where M is a transition metal such as Ta or Nb,
X is a chalcogenide such as Se or S, and Y represents halogen ions between the
fibers. A more complicated cluster condensate is shown in Figure 2.27, represent-
ing K0.3MoO3, one of the blue bronzes. A further member of this cluster conden-
sation family we already encountered is the Krogmann salt KCP in Section 2.3 of
this chapter. Here M = Pt and X = CN, the cyano group being a close relative of
the halogens.
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Figure 2.26 Crystal structure of
(MX4)nY. Source: After Gressier et al.
1983 [28].

Why Are Transition Metal Chalcogenides and Halides Important?
Cluster condensation may lead to metals or to semiconductors (insulators),
depending on the number of M and Y atoms. When the number of nonmetal
atoms in a compound is not sufficient to completely surround the metal cluster,
the clusters link up by direct M—M bonds [25], thus forming extended M—M
chains or metal planes. The alkali atoms in Figure 2.27 and the halogen atoms
in Figure 2.26 help to adjust the electron density and fix the Fermi level. Thus,
they determine the details of the electronic properties of these compounds and
in particular the charge density wave behavior.

2.8 Halogen-Bridged Mixed-Valence Transition Metal
Complexes

Many scientists see halogen-bridged mixed-valence transition metal complexes
as an ideal platform for 1D solid-state physics. The long name of these substances
has been abbreviated to HMMC; another short colloquial term is MX chains,
where M stands for transition metal atoms and X for halogen atoms. The
essentials of the structure are shown in Figure 2.28: in the chain M and X atoms
alternate; here, M = Pt and X = Cl. Ligands are attached to the metals; in some
cases there are counterions between the chains. Hence, in a certain respect
HMMCs are related to Krogmann salts (cf. Figure 2.8), even though the chains
are not exclusively made of metal atoms. An electronic energy band is formed
by the dz-orbitals of the metal atoms and the pz-orbitals of the halogen atoms.
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Figure 2.27 Crystal structure of the blue bronze showing the infinite sheets of MoO6
octahedra, separated by the alkali ions. The sheets contain the infinite chains. Source: After
Schlenker et al. 1983 [29].

Depending on structural details, the electrons in this band can have various
degrees of localization. The limit on one side is the valencies of the transition
metals oscillating along the chains between II and IV (see Figure 2.28). On the
other borderline case, all metal atoms have the valence state III.

Why Are MX Chains Important?

The importance of the MX chains arises from the fact that the synthesis of
these substances is straightforward and high-quality single crystals can easily be
grown – not only for one particular MX compound but for a large variety. Typical
metals are M = Pt, Pd, or Ni and the halogens are X = Cl, Br, or I. Common
ligands comprise L = halogens, ethylamines, ethylenediamines, or cyclohexane-
diamine, and as common counterions between the chains Y = halogens or ClO−4 .
One particular way of writing the stoichiometric formula of a HMMC is

[M𝜌−𝛿L4][M𝜌+𝛿X2L4]Y4 (2.1)
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Figure 2.28 Halogen-bridged mixed-valence transition metal complex.

Here 𝜌 denotes the average valence of M and 𝛿 the deviation from the average.
If 𝛿 is small, the X atoms are centered between the metal atoms. For large 𝛿 the
halogens move closer to the metal with the higher valency. In some PtCl chains
distortion can be as large as 20%. By changing M, L, X, and Y, it is possible to
vary the properties of the substance in a well-controlled way. In particular, the
dimensionality can be adjusted (interchain coupling), and the electron–electron
and the electron–phonon interactions can be tuned leading to a wide variety of
exotic excitations along the chains such as charge density waves. Important arti-
cles on MX chains are provided in [30]. Further publications are found in the
proceedings of the ICSM starting at 1990 onward (as mentioned above).

2.9 Returning to Carbon

“Let Carbon be your guide.” It is now time to return to carbon to compare and
contrast how it “handles” dimensionality in 1D, in light of what we have just
seen. Indeed, with its ability to flexibly bond, pure carbon does throw us a few
curves, with complications not readily seen in the structures we have encoun-
tered – though for some cases it isn’t too hard to imagine that the tricks pure
carbon plays could also be engineered in other materials. So for this section, our
discussion centers on the situations in which pure carbon plays the role of the
low-dimensional “wire.”
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2.9.1 Conducting Polymers

No other class of 1D materials has triggered such large numbers of publications
or altered the landscape of solid-state physics research, as conducting polymers.
In 1977 it was discovered that the conductivity of polyacetylene can be increased
by many orders of magnitude, through a process known as “doping” [31]. We use
quotation marks here because this type of doping is a little different from what
we might know from the more typical substitutional arrangement of impurity
atoms in a 3D solid like Si. Indeed, like Little’s superconductor and the other many
examples we have already encountered, here we mean a transfer of charge over
to the low-dimensional structure.

Since 1977, conducting polymers have dominated contributions to the ICSM.
Contributions can also be found in the national meetings of a great number of
professional societies; the American Physical Society (APS) meetings and the
American Chemical Society (ACS) meetings have both begun to incorporate ses-
sions on conducting polymers, for instance. In 1979 the journal Synthetic Metals
came into life, and most of the articles therein deal with conducting polymers. In
2000, the Nobel Prize in Chemistry was awarded to Alan Heeger, Alan MacDi-
armid, and Hideki Shirakawa for their pioneering work on conducting polymers,
which basically explained how conductivity arises [32].

The reason for all this popularity is found in three motivations:

1) Conducting polymers have already been shown to have a large number of
applications, with more emerging (see later chapters and also [33]).

2) Conducting polymers are derivatives of polyenes, i.e. of compounds with
extended systems of conjugated double bonds. Such systems are subject to
quantum chemical concepts and calculations [34].

3) There are certain excitations in polyenes, which are related to solitary waves
and to solitons. Thus, there is an interdisciplinary link to field theory, hydro-
dynamics, elementary particle physics, and certain aspects of biology [35].

These three motivations will quickly become the focus of our discussion in later
chapters. For now, Figure 2.29 shows the basic chemical structure of some of the
most important conducting polymers. The regular array of alternating single and
double bonds, characteristic for polyenes, is clearly visible. (In polyaniline the
extra electron pair on the trivalent nitrogen atoms participates in band formation,
so that this substance is conjugated as well.)

Here we have followed several conventions while making our “stick figure”
diagrams. Generally we leave out the carbon labels (C) on the diagram because
we understand them to be carbon. If something else is there, we mark it. So
the hexagons of the polyphenylene have carbons at each of their vertices. Next
we take up the free bonds of the carbons with a hydrogen (saturating the
bonds), which we also assume you know, so it’s left out. If there is something
different there, like in the polyfluorene, we let you know. This shorthand
way of writing down the structure allows the “conjugation” or the alternating
double-to-single-to-double bonds, to come through rather clearly in the picture,
so we can trace the path of carrier transport.
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Figure 2.29 Chemical structures of some important conducting polymers.

In Figure 2.30 computer renditions of the polymers above are shown as
space-filled models, highlighting the orbitals. A large part of the interesting
physics is related not only to the high conductivity after doping but also to the
extended system of conjugated double bonds.

Figure 2.31 shows the chemical structure of polydiacetylene. Here the bond
sequence is single-double-single-triple-single-double-single-triple. From a cer-
tain point of view, it is justified to say that the system is in between polyacetylene
and polycarbyne (see Figures 1.10 and 1.12). Polydiacetylene is the only conju-
gated polymer from which large single crystals can be grown. Actually, these
crystals are not grown from the polymer but from monomeric diacetylene. In
the crystal, the monomers can be polymerized without disturbing the crystal
structure. This is a very rare case of solid-state polymerization. It can be achieved
because in diacetylene crystals, the monomer molecules are already in the posi-
tions and orientations needed for the final polymer. The polymerization is initi-
ated by light or heat. Figure 2.32 shows a scheme of the solid-state polymerization
[36]. Polydiacetylene research actually has its own scientific community, and sev-
eral conference proceedings and monographs have appeared on this topic [37].

It should be noted that there exists a structurally unifying way of visualization
for conducting polymers. This involves the use of a single sheet of graphite. As
most tunneling microscopists will tell you, to create an excellent, flat surface, on
highly oriented pyrolytic graphite, all one needs is a little Scotch tape. By plac-
ing the tape on the surface and pulling off again, a few individual layers will be
removed. This is due to the extremely weak van der Waals forces that hold the
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Figure 2.30 Computer-generated space-filling models of the polymers shown in Figure 2.28.

layers together. Imagine now only one, atomically thin, layer: graphene, and it
can be used as the template for most conducting polymers. To demonstrate this,
consider the graphene sheet in Figure 2.33.

2.9.2 Carbon Nanotubes

Carbon nanotubes are unique in the field of 1D structures [38], and we have
introduced this odd object already. In Section 1.3.4 a 0D form of carbon was
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Figure 2.31 Idealized chemical structure of polydiacetylene.
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Figure 2.32 Scheme of solid-state polymerization of diacetylenes.
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number of optical and
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Figure 2.33 The conjugated systems map fortuitously onto graphene. The technique can be
used to “map” specific symmetry groups onto polymers, allowing for a deeper understanding
of their properties.
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1 nm

(a) (b)

Figure 2.34 “Nanotube.” Carbon can form cylinders with some 10 Å in diameter and several
micrometers in length. At the right is an atomic resolution image taken with a tunneling
microscope at WFU.

introduced – fullerene. Figure 1.14 shows a football composed of 12 pentagons
and 20 hexagons. This structural concept can be extended to molecules with
more carbon hexagons, yielding long and narrow carbon tubes: sort of cylindri-
cal graphene with fullerene caps at the ends. In Figure 2.34, one of these tubes
served as logo for the “International Winter School on Electronic Properties of
Novel Materials: Progress in Fullerene Research” in Kirchberg, Austria, in March
1994 [39].

When discussing the concept of a “mixed-dimensional” or topological object,
the carbon nanotube came up again. To truly understand what the concept of a 1D
topological object has to teach us, we must complete that discussion of the carbon
nanotube. Specifically, to construct (conceptually) a carbon nanotube, we begin
with a graphene sheet. The sheet is infinite in 2D extent, one atom thick, and com-
posed of threefold coordinated carbon using sp2 hybrid bonds as in Figure 2.35.

Notice that any number of A–A′ and B–B′ points could be chosen leading to
different R and T vectors as we define them in the figure. So specifying a spe-
cific way to wrap the sheet up into a tube is done using the indices (n,m). These
are derived from the number of unit vectors (upper left) that it takes to specify
vector R.

Alternatively, one can specify the diameter of the tube and the angle, Θ, that
R makes with the darkly shaded hexagons running diagonally on the map (we
call them the “armchair direction”). This angle is termed the “chiral” angle, but it
really adds up to be nothing more than the helicity of the molecule. In the example
given above, a (8,5) nanotube will be formed when rolled.

This geometry of the tiling of the surface with hexagons is quite useful for
descriptions, but it is also describing another dimensional aspect of the nanotube.
For instance, knowing that the above is a (8,5) nanotube tells us that the diameter
of the nanotube will have to be

DIA = R∕π = (
√

3ac−c∕π)(n2 +m2 + nm)1∕2 (2.2)
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Figure 2.35 The standard map for understanding carbon nanotubes. Cut the graphene along
the dotted lines on the right. Roll (along vector “R”) into a tube connecting A–A′ and B–B′. This
gives a tube. Notice that the unit cell of the tube has been marked out on the map with dotted
lines across the tube axis. The vector marked “T” is the translation vector for this system. At the
bottom is what this tube will appear as once it is rolled. Source Courtesy Jannik Meyer,
University of Vienna.

where ac–c is the carbon–carbon distance (lattice parameter). Further, we know
that the chiral angle must be

Θ = arccos[(2n +m)∕2(n2 +m2 + nm)1∕2] (2.3)

or, in our case, ∼22.5∘.
Putting numbers in Eq. (2.2), we get DIA ∼1.3 nm for a (10,10) nanotube

(n = 10, m = 10, and for ac–c we take the bond length in a benzene ring:
ac–c = 0.14 nm). This essentially describes another dimension of confinement in
the system: the width of a box into which the electrons must fit. The vector T
is also uniquely defined by this and is the distance one must translate along the
tube to repeat the atomic order – in common solid-state terms: a unit cell. So
it tells us how many atoms are donating electrons to the unit cell and thus how
many electronic states must fit into this box. As we will see in coming chapters,
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since the chirality of the tube defines the number of electrons in a unit cell
together with lattice parameters of the cell, it allows for both semiconducting and
metallic characteristics. So, specifying (n,m) also tells you what electronic type
of nanotube you have! Such a dramatic difference in properties from something
as simple as the “twist” of the molecule is surprising – now you can see why we
study carbon.

Carbon nanotubes with diameters ≪ 1 nm are unstable, because the elastic
energy needed to roll the tube (graphene wants to be flat; the sp2-orbitals are
in a plane) is larger than the chemical energy gained from closing the bonds to
form a seamless tube. Nanotubes with much larger diameters are also unstable:
fat tubes collapse due to the attractive van der Waals forces between opposite
segments of the walls.

It is also possible to imagine inserting atoms into the empty space inside the
tube – endohedral chemistry! Indeed, a number of different species have been
added to the interior of nanotubes – from fullerenes to fullerenes with atoms
inside and to bimetallic compounds. Practically, the tubes can be as thin as one
nanometer in diameter and as long as several microns. A special case of inserting
something into a carbon nanotube is to put another, smaller, carbon nanotube
into it. This leads us to single-wall, double-wall, and multiwall carbon nanotubes:
SWNT, DWNT, and MWNT.

2.10 Perovskites

Perovskite is a mineral of CaTiO3 (calcium titanate). It was first discovered and
recorded by Gustav Rose in the Ural Mountains of Russia in 1839 and named
in honor of his colleague, the mineralogist, Lev Perovski (1792–1856).2 In 1926
Victor Goldschmidt described the perovskite structure, and this structure was
confirmed in 1945 for BaTiO3 using X-ray diffraction by Helen Dick Magaw. So,
unlike many of our examples above, it is quite an old and well-established family
of crystals.

The structure itself is quite simple: (XIIA2+VIB4+O2−
3) or ABO3 where the A site

ion is typically an alkali earth or rare earth element and the B sites are 3d, 4d,
and 5d transition metal. The crystal structure is drawn out in Figure 2.36. His-
torically, these materials have emerged into the scientific eye several times. First
it was to mineralogists who realized that substitutions such as (Ca, Ce, Na)(Ti,
Fe)O3 could be used to identify many naturally occurring minerals throughout
northern Europe. Then it was realized that materials such as BaTiO3 have aston-
ishing piezoelectric properties. Still later it was shown that many of these mate-
rials make excellent substrates for the growth of Type II superconducting thin
films. This provided the basis for the technological development of synthesis and
growth of such crystals.

2 Sadly, people don’t much name things for their colleagues anymore do they? Today, we choose a
character from the latest Harry Potter book, or Star Trek movie. But Gustav Rose obviously had a
great deal of respect for his colleague Dr. Perovski.
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Figure 2.36 The perovskite structure.

However, as the complexities of the ABX3 structure continued to be explored
by the synthesis community, it was quickly realized that A and B didn’t need
to be a single ion and X didn’t need to be oxygen. The structure provided the
properties, and those properties could be tuned further by substituting more
exotic constituents. Specifically, the community sought to tune properties such as
optical absorption bandgaps, absorption lengths (oscillator strength), and carrier
mobility.

In 2009 [40], it was demonstrated that such tuning could lead to perovskites
that were suitable for photovoltaic applications. Very quickly materials such as
the methylammonium lead trihalides CH3NH3PbX3 (where X is a halogen atom
such as iodine, bromine, or chlorine) were able to achieve conversion efficien-
cies of greater that 20%, rivaling commercial silicon. In this crystal, the methy-
lammonium cation (CH3NH3

+) is surrounded by PbX6 octahedra [41]. Due to
concerns about the use of lead, as well as the search for bandgaps neared the
ideal for photovoltaics, these compounds were quickly followed by similar con-
structs: the formamidinum lead trihalide (H2NCHNH2PbX3) and the tin-based
CH3NH3SnI3 [42]. Of course more traditional perovskites have also had some
impact in the photovoltaic field, such as LaVO3/SrTiO3 heterostructures [43]. For
the purposes of our discussions, however, we must keep in mind that the prop-
erties sought and the ability to vary those properties so widely come from the
inherently low-dimensional nature of the perovskite structure.
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2.11 Topological States

There are some unusual cases where the shape, size, and connectedness – or
topology – of a system can be used to create one-dimensionality. Consider the
very simple example of the thin conducting bar. If the bar is truly thin, with strong
confinement in z as in the above example (Figure 2.37), and a symmetric set of
contacts are placed on each end with a potential, then a constant vector field of
current will result. The current density along the bar will be the same at all points.
Now if a homogeneous magnetic field is applied perpendicularly to the bar and
the vector field of current, in the above case out of the page in z, then Landau lev-
els, or circular orbits, will begin to form. Let’s consider the case where the B-field
strength has been raised to the point where the curl of J is a maximum, and there-
fore all electrons within the plane participate in closed circular orbits: Bc or the
critical field as we might call it. At this point something very unusual happens.
There is no transport in the center of the bar at all! For most purposes we might
refer to the middle part of the bar as an electrical insulator. Here we mean trans-
port to be the movement of electrons from one contact to another so that they
can be measured (counted). However, according to Stokes theorem, we surely do
have a current that runs along the perimeter of the system, defined by the bound-
aries of the system itself, having some unusual properties. Now we might notice
that the net current delivered between the two contacts is zero. However, each
edge carries current in only one direction. What if we were to place a scattering
impurity upon one of these edges? Could the electrons in this state be scattered
backward? In order for the electron to do this, it would have to be transported

A typical conducting
bar experiment.

Stokes theorem

I

I

At some critical field strength of B, call
it Bc, all of the current density in the
plane is locked up in circular orbits.
This leaves only the current along the
edges to make it from one contact to
another.
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Figure 2.37 A thin conducting bar (two-dimensional) can be made into a one dimensional
system easily with a magnetic field.
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across the insulating middle of the system and onto the opposite edge, quite an
improbable task. Indeed, to handle this scatterer and maintain the Stokes equal-
ity, the system must redefine its boundary and allow the current to flow around
scatterer! We refer to such states as topologically protected. They can be made
to occur under a variety of situations, not just applied magnetic fields, and are
a result of a fundamental principle in such systems: time reversal symmetry. We
will discuss this in far more detail in later chapters.

2.12 What Did We Forget?

Let’s look at a few more systems in one dimension. In this section we take a look
at materials that are a little more rare in the lab.

2.12.1 Poly-deckers

Figure 2.38 shows the poly-decker structure: poly(η5,μ-2,3-dihydro-1,3-diborolyl)
nickel [44]. These materials are constructed from five-membered heterocycles
that are stacked by sandwiching metal (Ni) atoms in a similar way as Fe is
sandwiched in ferrocene. If ferrocene is classified as double-decker structure,
the compound depicted in Figure 2.38 should be called a poly-decker. Early
demonstrations using Ni were quickly expanded to include a wide variety of
metal atoms: Mn, Fe, Co, Ni, Cu, and Zn [45]. Charge transport is through the

Figure 2.38 Poly(η5, μ-2,3-dihydro-1,3-diborolyl)nickel as
an example of a “poly-decker” structure.
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Figure 2.39 Polycarbene as one possible first step toward one-dimensional organic
ferromagnets.

metal ions with the rings acting as a scaffold, an atomic wire. But of course,
this means the system is excellent for the direct study of lattice coupling to the
electronic properties of such wires and thus they have been popular for testing
predictions on Peierls distortion effects.

2.12.2 Polycarbenes

Carbenes contain divalent carbon atoms with two nonbonding electrons. One
way of arranging carbenes in a polymer is shown in Figure 2.39 [46]. If the non-
bonding electrons in carbenes are in singlet states, their spins are compensated,
and they form a lone pair with no net spin.

In the triplet state carbenes carry spin= 1. In the polymer there might be a pos-
itive (ferromagnetic) interaction between these spins so that the whole molecule
is in a high-spin state. These high-spin carbenes can be interpreted as a first step
toward all-organic ferromagnets. Organic ferromagnet is also a rapidly emerging
field of modern material research [47].

2.12.3 Isolated, Freestanding Nanowires

Many of the materials described so far have utilized asymmetries in bulk conduc-
tivity to approximate 1D behavior. The measurement is an ensemble average of the
behavior of many 1D systems. But, as with carbon nanotubes, an entire cottage
industry has developed around the synthesis of individual/isolated nanowires.
These synthesis methods use a wide range of atomic building blocks. Indeed,
today we know quite a lot about the creation of highly crystalline, high aspect
ratio nanorods in monatomic, binary, ternary, quaternary systems, inter-wire,
and intra-wire junctions, as well as the chemical manipulation for placement of
individual or infinitely many nanowires. And the number of treatises written on
the subject grows each year.

There are a few general statements that can be made regarding this vast cata-
logue of materials. First is that the growth and structure of these, typically solid,
nanowires are dominated by heats of formation. Moreover, surface and interface
energies dominate faceting, and stoichiometries can be hard to control due to
lattice expansion with the “few atom” diameters they present. Second, air sensi-
tivity due to rapid oxidation and fragility (damage) can be a problem in exper-
iments. Mechanical properties are usually dictated by dislocations within the
atomic structure, and defects are usually very mobile. Finally, surfactants are typ-
ically used to separate and place such nanowires where one wants them. Many
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times, this must be removed before experiments begin. So as you can see, exper-
iments are a challenge, but they can be done.

A couple of the most common methods of creating these materials are as
follows.

2.12.4 Templates and Filled Pores

Many 3D solids contain pores, voids, or channels in which materials can
be inserted or intercalated in the liquid or gaseous phase. Examples of such
materials are zeolites and clays that provide long and narrow channels ideal for
metal insertion (Figure 2.40) [49].

The idea is simple; fill up the channels with the metal of your choice. Then use
a chemical bath to etch away the superstructure of the zeolite or clay. This leaves
behind the nanowires. Such nanowires can be quite long but usually entangled
and not very straight: not too dissimilar from a Brillo Pad used to scrub pots
and pans, only with nanoscale wires. If one chooses a superstructure that can be
removed using supercritical drying techniques, aerogels of such wire meshes can
be explored. The optical properties of such metal nanowire aerogels have proven
to be quite interesting. This is because the loops and wires within the gel can act
as a system of inductors and antennae.

Of course, one can be more systematic about this. Over the past 10 years or
so, the technology to create long pores of well-defined diameter in a matrix such
as alumina (Al2O3) has matured, and these can be made controllably and repro-
ducibly. Indeed the science of template formation has become somewhat of a
cottage industry by itself.

The process is quite simple; first aluminum foil is anodized and etched, forming
closely packed pores as shown in Figure 2.41. The packing, diameter, and length
of the pores depend intricately on the anodizing voltage and time. By suddenly
changing the voltage during the process, branching can be achieved (nano-tuning

(a)

(b)

Figure 2.40 (a) Framework structures and (b) tubular representations of the channel systems
of zeolites. Source: After Ramamurthy 1991 [48].
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Figure 2.41 Nano-porous templates have become a standard in the fabrication of a widely
dissimilar array of nanowires. The pores shown here are approximately 20 nm in diameter and
1000 μm in length.

forks). These pores can then be filled with a substance, monomers for creating
para-phenylene vinylene (PPV), for instance. Alternatively, metals can be added
and even alternated to make heterojunction, metallic nanowires! Because the
technique relies on the processibility of the filling material and is not as sensitive
to the chemical makeup, the types of wires that have been demonstrated vary
dramatically. Once the pores are filled, the Al2O3 can be removed using acids,
leaving behind only the wires as in the case above.

Of course, as pointed out, nearly any material can be used to create such
nanowires, including highly reactive materials. When placed in contact with
air, these reactive materials can undergo rapid oxidation, which is generally
exothermic. This has been the origin of many lab-based explosions!

2.12.5 Asymmetric Growth Using Catalysts

As templating methods (above) have progressed, so too have direct catalytic
growth methods. A wide assortment of nano-width, micron-long wires can
now be reproducibly created in rather large quantities, by directly assembling
atoms from a gas on a catalyst particle (chemical vapor deposition, CVD)
within a high-temperature, atmospherically controlled oven. Typically, small
catalyst particles are faceted, and diffusion of adsorbed (or absorbed) gases
across (or through) the particle is greater along one crystallographic direction
than another. As some atomic arrangement assembles more rapidly on one
given surface of the particle than another, an asymmetry in growth direction
is introduced resulting in 1D wires. The catalysts can be added either before
growth on some substrate placed within the growth oven or can be introduced
simultaneously using a vapor coalescence of metal atoms provided by flowing a
metal-containing organic with the growth source gas. For 1D wire CVD growth,
there are few generalities that must be met. Catalyst particles must be small (typ-
ically <20 nm), temperature of growth must be sufficient to allow for breakdown
of gas stock, and catalyst-growth material systems must be chosen to allow for
some solid solubility of the growth material in the catalyst particle. Examples of
such growth (Figure 2.42) now include such semiconducting materials as GaN,
once quite difficult to control.
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Figure 2.42 A TEM micrograph of GaN
nanowires grown using chemical vapor
deposition (CVD) techniques shows
well-defined, one-dimensional
structures. Source: Courtesy of J. Liu,
Wake Forest University.
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Figure 2.43 Scheme of a
semiconductor quantum wire defined
by using a split Schottky gate imposed
on a AlGaAs–GaAs heterojunction. The
white areas between source and drain
electrodes indicate the quasi
two-dimensional electron gas formed
at the AlGaAs–GaAs heterointerfaces.

2.12.6 Gated Semiconductor Quantum Wires

We have already encountered lithographically fabricated silicon and gal-
lium arsenide quantum wires as an example of the external approach to
one-dimensionality. However, there is also a macroscopic semiconductor device
that acts as though it were a quantum wire, shown in Figure 2.43. Since the
advent of modern microfabrication technologies and extremely pure substrate
growth mechanisms, such “semiconductor quantum wires” have been the
subject of a large number of exciting experiments [50]. As substrates, usually
AlGaAs–GaAs heterojunctions grown by molecular beam epitaxy are used.
At the AlGaAs–GaAs interfaces, a quasi-2D electron layer is formed, which
can exhibit extremely high mobilities. The confinement to a 1D wire is then
achieved by imposing a microstructured split Schottky gate onto the surface.
Upon applying a negative bias to the split gate, electrons in the underlying 2D
electron system are depleted, thus forming a narrow (or quasi-1D) channel
in the gap. The split gates can be fabricated using sophisticated technologies
like electron beam lithography making it possible to achieve extremely small
dimensions.

2.12.7 Few-Atom Metal Nanowires

Before ending our discussion of 1D systems, we really should mention the
fascinating case of nanowires built using the scanning tunneling microscope
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(STM). As with a few of our examples, this isn’t a material so much as it is a
way of coupling a nano-object to an experiment. But these interesting and novel
experiments highlight the difficulties that come with measuring phenomena
in low-dimensional structures. And, they have also opened up a rich world of
phenomena that couple mechanical and electronic properties in metals.

In Chapter 1 we mentioned the “famous” problem of the single line of gold
atoms acting as a wire. As we have seen, there are many ways to synthesize com-
pounds that result in ensembles of atomically thin metal wires. Of course what
we really might want is an isolated, single-strand, atomically thin metal wire with
nothing touching or supporting it except perhaps the electrical contacts. After
all, to an atomically thin wire, anything that might touch it is obviously a large
perturbation of the system! This situation has actually been realized, in a surpris-
ing way.

We tend to think of surfaces in terms of their macroscopic thermodynamic
energies of formation. However, at the microscopic or atomic scale, they can be
quite fluid, and so the dynamics of contacting two materials and then separat-
ing them again can be messy – depending on the materials. Using this idea, a
number of scientists have sought to study the very thin wire that forms when two
macro-objects come into contact and are subsequently removed slowly. Specif-
ically, the measurements involve “crashing” the gold tip of a scanning tunnel-
ing microscope into a gold surface and slowly retracting [51]. During retraction,
adhesion between the two surfaces allows for creation of a very fine wire between
the tip and surface. The further the surfaces are retracted, the thinner the wire
becomes. This “simple” experiment has led to a complex variety of behaviors from
molecular-scale wires in a “freestanding” state (Figure 2.44).

An atomically sharp

tip and surface of

similar metals are

“crashed” together in

an STM.

Au

Au

Tip

Atomically thin wire

Surface

Retracting the

tip slowly

allows for the

formation of a

standing metal

wire.

Figure 2.44 The retraction of the tip from the surface after contact leaves an atomically thin
wire. Current–voltage (I–V) curves from the STM are used to determine the electronic
properties.
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Such wires can exhibit surprising ductility, ordering during “drawdown” and
quantum resistance. Moreover, similar experiments can be carried out on “break
junctions.” In this case a narrow metallic strip on a silicon substrate is broken by
bending the substrate. A gap opens in the strip, which might be bridged by a row
or individual atoms. Molecules can be squeezed in the gap, and then electrical
current flowing through a single molecule can be studied [52].

2.13 A Summary of Our Materials

In this text we are embracing the concept of exotic material as the case where
trans-dimensional effects are strong. What do we mean by trans-dimensional?
This is simply a lower-dimensional structure that is influenced by something in
a higher dimension. So in 1D nanowires, the electrons are essentially confined
to the path of the wire. However dopants and fields can be added from the third
dimension by simply bringing a dopant molecule up to the wire and touching
it. This intersection from the point of view of the carrier may look only like a
simple point, but it puts the wire into contact with the properties, symmetries,
and phenomena associated with that 3D dopant object. In other words, the effect
traverses the dimensional divide between the two.

This semi-historical tour has provided a number of examples that are instruc-
tive to this point. We have focused on 1D materials, but the same kind of chapter
could be written for 2D and 0D materials. The point here is only to introduce the
many ways in which dimension enters into material structure–property relation-
ships. But it should also be clear by now that in low-dimensional materials there
can be surprising degrees of complexity.

There is another theme that emerges from this chapter. Regardless of the system
under study: the metal “wires” of a Krogmann salt, an MX chain, or the carbon
“wire” of the carbon nanotube, the coupling of the electronic properties to the
lattice of the linear arrangement of atoms is exceedingly strong. In most cases
lattice distortions in low-dimensional systems travel along with the carriers in
the wire to yield a rich assortment of transport and optical properties unique to
the dimensionality.

In Chapter 1 we described how the approach to the organization of thoughts on
solid state in this text would be a bit different from other such organizational prin-
ciples. Now you might see the advantage of such an approach. You might say that
the intrinsic story of solid-state physics, with its models of lattice and electron
dynamics, is not complete without some understanding of the extrinsic proper-
ties of dimension and symmetry of the solid-state object across many different
scales. The examples of this chapter certainly help to reinforce this perspective.

Unlike other chapters in the text, this problem set focuses on literature searches.
This is done to give a broad-based overview of the different directions that mate-
rials engineering and materials sciences have taken. What is out there? What are
scientists worrying with?
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Exploring Concepts

1 Chalcogenide nanowires: Wet chemistry, templating synthesis techniques
have allowed the creation of highly crystalline ternary chalcogenide
nanowires. Look through literature and describe in detail the crystal struc-
tures claimed for two different examples. Examine older attempts at the
creation of three component systems that resulted in much wider diameters.
Are the crystal structures reported the same as for the extremely thin wires?
Discuss why this is the case.

2 Perovskites: We mention several hybrid (meaning inorganic/organic) per-
ovskites used for photovoltaic applications. Do a literature search and
draw these structures in the same manner we have presented the oxide
perovskite. See if you can identify potential pathways that may provide a link
to low-dimensional behavior.

3 Topological insulators: The first naturally occurring topological insulator was
reported by a team at the Max-Planck-Institut für Festkörperforschung in
Stuttgart in 2013. The layered kawazulite was found to be less defective than
its synthetic counterparts. Do a literature search and describe this material
in detail, including the crystal structure.

4 Conducting polymers: What is the highest conductivity achieved with a con-
ducting polymer? How will you have to look this up in the literature and will
you run across a wide variety of candidates? Describe your “champion” poly-
mer and how the measurement was made that showed the high conductivity.

5 Carbon nanotubes: It is frequently said that carbon nanotubes are among the
strongest materials in nature. In fact people have even proposed to build ele-
vator into space from such materials. Just how strong is such a beast (the
single-wall nanotube)? How much force would be required to break one nan-
otube? Compare that to a BN nanotube.
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3

Order and Symmetry: The Lattice

Consider these three states of matter: solid, liquid, and gas. Solids and liquids
are collectively called “condensed” matter because they have a large mass den-
sity and are difficult to compress. Atoms in close proximity have little room for
irregularities in interatomic distances whereas, gasses are highly compressible.
For liquids and gases, shear forces are negligible. In crystal systems, forces keep
the distance between the atoms fixed and lock the relative angular positions of
the atoms in place. These materials do not flow. But liquids and gases, together
classified as fluids, can take the shape of any container. In other words they flow.
So this use of properties (compressibility, flow, etc.) is one way to group materials
and understand their nature.

Even among solids, crystalline solid describes molecules or atoms arranged in
a regular way. Amorphous solid is when there is a large amount of disorder in
a solid’s isotropic ordering. The existence of shear forces in a solid, due to steric
or bonding considerations, implies order. The angular positions of atoms cannot
be completely random. For example, a silicon atom is found in the center of a
tetrahedron with an angle of 109.5∘ between the bonds to its nearest neighbors.
Therefore, there is short-range order even in amorphous solids. In crystalline

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
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solids the order is long range. But notice now that we speak of symmetries as
opposed to properties as an organizational principle.

If we assume that the ground state of all matter is crystalline, will all amorphous
solids crystallize sooner or later? Curiously, as time frames for crystallization
approach universal time scales, the answer to this question is “no.” If you find
a rock formed during the Big Bang, you can’t necessarily expect it to be fully
crystalline. Nor do you expect it to become so by the time the universe is cold
and dark. This is because these systems approach their ultimate ground state fate
asymptotically.

3.1 The Correlation Function

Of course, the degree to which something is amorphous or crystalline can be
important for some purposes. How defective must a crystalline solid become
before it is amorphous? What is glassy behavior? To better understand the degree
of organization, physicists frequently resort to statistical measures such as the
correlation function. How does this work? Well starting at any given atom within
the solid, the mass correlation function is simply the probability of finding another
atom at some distance away. Usually the starting atom is chosen so that it is
not special in any way (representative). There are other correlation functions as
well. They usually link the probability of finding a specific value of some char-
acteristic starting with a value for that same characteristic at the function’s ori-
gin. Spin–spin correlation is an example. Typically, such functions are presented
isotropically, meaning you show the probability as you move away from the ori-
gin radially as in Figure 3.1. This example presents the mass correlation function
of a jar of marbles (hard spheres packed together). Choose any marble and move
away, in distance, in any direction. What is the probability of the mass density or
the value of the mass density, if you prefer, in each differential shell as you move
out along R? It is g(R), the correlation function shown. Notice that for randomly
stacked hard spheres, the spheres fit together as tightly as possible. This means
that a given sphere is surrounded by a shell of mass centered roughly at R = 1
diameter of the spheres used.

For a spin glass place a magnetic ion at the center of each marble, and then
ask what the probability of finding a specific spin projection is as we move out
along R. Again there would be some correlation function g(R,Sz). So this function
seems to present us with the geometrical ability of describing the interactions
of objects that have been packed together. Some scientists base all discussion
of order in condensed matter on this function – as the most basic sense of order.
In our discussion, it is important to understand only that a disordered solid may
also reflect symmetries and that there are well-defined ways to describe them.
The correlation function is one of those ways.

Of course, to be precise we should say that we are describing the static correla-
tion function. After all, if we were to describe a system in which the expectation
values of some observable could change with changing stimulus, then the correla-
tion function for that observable would also change with the stimulus. This forms
the beginning of formal response theory, and it is particularly useful at describing
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Figure 3.1 Correlation functions can be constructed for any order parameter: spin, mass, etc.
Here, we give a simple model for how to think of a mass correlation function. Notice that the
less ordered the “packing” is, the smaller the maxima in the g(r) curve become. In our example
there is very good local order, a few marbles out, and they are still in places where you expect
them. However when we exceed about 4 or 5 diameters of the marbles, the mass is smeared
isotropically in the volume.

phenomena such as phase transitions. The observables become known as order
parameters, and the distances characteristic of their expectation values become
correlation lengths. The thermodynamics and statistical mechanics of response
theory is especially important because it forms a bridge between critical phe-
nomena in systems of condensed matter and other processes in the universe at a
fundamental level. Whether it is the condensation of atoms in a beaker to form
a solid or the symmetry breaking of a cooling universe to separate out the fun-
damental forces, it is all described by the same mathematics more or less. This
is exactly why this remains a mystery, but the principle is known as universal-
ity, and it is reflected in the exponentials that describe temperature dependences
of order parameters, near-phase transitions, and the critical exponents.

3.2 The Real Space Crystal Lattice and Its Basis

What does “long-range” order mean? In single crystals the order covers the
entire crystal, which is from some microns up to many centimeters. Most solids,
however, are polycrystalline. They are composed of microcrystalline domains or
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grains, which stick together to form the bulk solid. The diameter of a grain can
be from fractions of a micrometer up to several millimeters.

Interestingly, most solids get their mechanical and electronic properties from
the interfaces at these grains: grain boundaries. Such boundaries can have atomic
registry between the grains or no registry at all. Some can support boundary
layers that are an entirely different phase of material than the crystals on either
side of the boundary. Phenomena such as the yield strength of quenched metal
bars or superplasticity in some ceramics are directly related to grain boundary
properties.

Clearly, long-range order gives rise to crystals and large crystalline grains. This
leads naturally to the concept of the crystal lattice. In a crystal lattice the regu-
lar arrangement of the atoms (or molecules) is periodic in some way; the same
pattern is repeated over and over again. For example, the sodium metal lattice is
shown in Figure 3.2, the graphene lattice in Figure 3.3, and the sodium chloride
lattice in Figure 3.4. Multiple repeating units in each direction are shown. The
lattices in Figures 3.2 and 3.4 are cubic, while the lattice of Figure 3.3 is trigonal.
The names of such lattices are pretty obvious; a “cubic” elementary cell, which
is a commonly found repeating unit, can be constructed as indicated in bold in
the upper right corner of Figure 3.2 (made out of cubes). For the sake of clarity,
only the atoms at the surface of the crystal are shown, while the atoms “inside”
are omitted.

The example in Figure 3.2 is of a simple cubic point array that has one sodium
atom on each point. The sodium atoms are bound together through the shar-
ing of electrons, but the description of the array ignores this for now. Instead we

Figure 3.2 Crystal lattice of sodium metal. A cube of atoms is being repeated.
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Figure 3.3 The triangular lattice of graphene has two carbon atoms as its basis. The vectors an
and am are translation vectors of the lattice. The white dots represent the “lattice,” and each
site has two carbon atoms.

Figure 3.4 Crystal lattice of sodium chloride.
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imagine each point or site of the lattice in mathematical abstraction. Atoms, or
groups of atoms, occupy the points of this “mental” lattice to form the real lattice
of the solid. The formal subtlety of building the mental lattice first, before filling
it with atoms, is an important one. It allows us to better understand the under-
lying symmetries of the system and the effects the basis (the associated group of
atoms placed on each lattice site) has on this symmetry. The sites of the mathe-
matical lattice are generally considered to be equivalent. That is, if you stood on
any particular site, the view would be exactly the same as for any other. But when
a basis is added to a site (more than one atom), this may change, as seen in our
next example.

The use of a basis set is illustrated in Figure 3.3, showing the two-dimensional
(2D) lattice of graphene. At first glance the lattice seems to be a honeycomb. How-
ever, the rule is that translating a lattice position from one lattice point to an
adjacent one reproduces the lattice – translational symmetry. But as can be seen,
the points marked “A” and “B” are very different. If you translate an “A” point to
its next nearest neighbor, the neighborhood of that atom site looks different. The
symmetry of the surrounding atoms has changed with respect to the translated
atom. Imagine standing on the “A” sites; the neighboring atoms form a triangle
pointing down, whereas on the “B” sites, the triangle of surrounding atoms points
up. These sites are clearly not equivalent, and such translations will not reproduce
the honeycomb pattern.

Now instead, imagine that the “lattice” is mathematically defined by the sites
marked in white (bottom right). Place onto each white site two atoms: the one
at the site and another just above it. This is seen in the site where the two-atom
basis is looped together by the dashed line. Translation of these two atoms to any
neighboring site (as defined by the white dots) reproduces the honeycomb pat-
tern exactly. We can choose the translation vectors an and am to find any site in the
honeycomb by specifying (n,m) and atom 1 or 2 of the basis set and then walking
n steps along an and m steps along am. So in fact the honeycomb of graphene is a
triangular lattice with a two-atom basis set (both carbon atoms but with different
bond rotations).

In the case of sodium chloride, a two-atom basis, one of Na and one of Cl, is
associated with each site of the square lattice (Figure 3.4). The crystal of sodium
chloride is built of sodium and chlorine units according the chemical formula
NaCl. There are as many sodium atoms as there are chlorine atoms. However, a
particular sodium atom does not have only one single chlorine atom as a partner
but six equivalent chlorine neighbors. These again are neighbors to other sodium
atoms, and there is an equal nearest neighbor spacing among them all. In other
words, there is no uniquely defined NaCl unit choice for the crystal. This coinci-
dence does not always happen when there is a basis set.

The distinction between solids with complex basis sets and solids that are
elemental (or nearly so) is frequently used to further classify solids. Elemental
crystals and molecular crystals can be distinguished along exactly these lines.
Most inorganic materials form elemental crystals. Examples include silicon,
copper, and carbon (diamond), and we might put the ionic crystal sodium chlo-
ride into this category as well as other binary, ternary, and simple combinations
thereof. In contrast, organic compounds can form molecular crystals, wherein
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the molecular units are weakly stacked into a crystal structure. The properties
of this solid are dominated by the molecules placed on each lattice point. For
example, benzene molecules exist in benzene vapor, in liquid benzene (with
solvents), and also when incorporated in a molecular crystal. In a benzene
crystal there are well-defined C6H6 units on each lattice site held there by weak
forces. The interactions between the carbon atoms within such a unit (molecule)
are much stronger than between the carbon atoms belonging to two different
molecules. We have already run into a variety of such molecular crystals in the
previous chapters such as the Krogmann salts. (For a monograph on organic
crystals, see [1].)

So, we have described the two fundamental components of a real space lattice:
(i) an abstract mathematical construction and (ii) a basis set, atoms added to each
point in the lattice abstraction. The lattice abstraction and its basis both express
a set of symmetries that may differ from each other. These are rotations, transla-
tions, reflections, etc. that map the crystal onto itself. Typically, we use these sym-
metry properties to classify and collect different crystal types or families. So when
discussing a specific crystal, you will usually give the name of the symmetry groups
that apply to the crystal’s family. There are many sources of these crystallographic
designations, and Ashcroft and Mermin [2] has long been a standard introduction
for crystal symmetries. But it isn’t the only one [1, 3]. However, instead of jump-
ing directly into the obscure nomenclature of crystal groups, let’s introduce some
ideas of lattice coordinates, so we can see how these symmetries come about.

3.2.1 Using a Coordinate System

Symmetry groups are applied to see what rotations, translations, and so forth can
be applied to the whole infinite lattice and leave it completely unaltered (that is,
it looks the same). There are really two types of symmetries we typically think of
when discussing crystals; first is the translational symmetry of points in space.
This is almost a definition for how you build a lattice: by repeating some elemen-
tary portion of it over and over throughout space. The second is point symmetries
such as rotational symmetries. These are based on local relationships among lat-
tice components: what angles and distances are the nearest neighbors placed? So
it is then natural to ask: what is the smallest chunk of lattice components that
completely express the symmetries that apply to the whole, infinite lattice?

To answer this question we introduce the elementary cell – a small chunk of
lattice that allows us to make up the whole lattice. An example of an elementary
cell is shown for the 2D rectangular lattice in Figure 3.5. A choice of elementary
cell is presented as a hatched rectangle in Figure 3.5, and notice we have used
it to help in the definition of a local coordinate system. Also notice the choice
is not unique; there are other ways to choose. The lattice is built up by moving
this cell parallel to the crystallographic a axis and the crystallographic b axis.
(We switched from (an, am) used by many studying graphene to (a, b) to match
more standard conventions for solids.) In this way the whole area (or volume)
of the crystal is “tiled” or “filled” without any gaps. Length a and width b of the
elementary cell (like the an and am above) are called lattice parameters or unit
lattice vectors (the “x’s” in Figure 3.5 mark the lattice points).
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Figure 3.5 A two-dimensional rectangular lattice. There are other potential unit cells that
could be chosen. But this one is particularly easy to work with.

Primitive crystal lattices or Bravais lattices are mathematically the simplest
constructions, or arrangements of points, that reproduce the lattice using transla-
tional symmetries. Here, we mean “translational” to apply between any two lattice
points: that is, all lattice points are equivalent in such a construction. Nonprim-
itive or conventional lattice structures may include basis atoms and additional
points to make the lattice easy to visualize. This is like calling the graphene lat-
tice a honeycomb lattice instead of a triangular lattice with a two-atom basis. The
second more accurately describes the symmetries of the system, but the first is
easier to “see.”

Coordinate systems are generally based on the Bravais lattice, so they will
express symmetries of this lattice. That is, reflection, rotation, and translation
symmetries typically occur along the principle axis directions. However, the
basis may not have the same or even similar symmetries. Yet, we will use this
(Bravais-based) coordinate system to describe it.

As always in physics, the choice of coordinate placement is subject to choice.
For instance, in Figure 3.5 we have placed the origin on a lattice point. The axis
arrows point along crystallographic a and b directions, and lengths a and b form
unit lattice vectors a and b. They are said to “span the elementary cell.” Any lattice
point can be reached by a linear combination of the unit vectors. In two dimen-
sions and three dimensions,

T = na +mb (3.1a)
T = na +mb+ gc (3.1b)

T is said to be a lattice vector (T for translation). We have used the integers
n, m, and g as indices of the lattice point to which the vector T points. A more
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refined notion of these indices is used to characterize directions and planes in
crystals a little later. Since all lattice points are equivalent, the physics at each
lattice site is the same, or, in mathematical terms, the physical laws are invariant
to the addition of a lattice vector to the coordinates of any lattice point. This is
called the translational invariance of the crystal lattice and of the laws governing
the physics within a crystal.

As with the ambiguities of coordinate choice, the unit cell we use to create this
lattice can be chosen in a number of different ways generally. We have said only
that it is “basic” in nature (contains only one lattice point) and that it is space fill-
ing. To be a little more precise, we want to choose a primitive cell that reflects the
same symmetries as the overall Bravais lattice (so it will not include the basis). The
most common choice of such a cell is the Wigner–Seitz cell. The region around
the lattice point contained in such a cell is the closest to that lattice point than
any other lattice point of the lattice as seen in Figure 3.6. In our discussions of
primitive unit cells, we assume that a Wigner–Seitz cell has been chosen.

When considering primitive lattice structures, it is important to realize how
many possibilities exist for distinctively different lattices. “Different lattices” in
this context has a specific meaning. We enumerate the different lattice types by
considering their symmetries. As we have already hinted at above, a symmetry
operation is doing something to the primitive lattice that leaves it unaltered. For
instance, if we take the cubic lattice of above and rotate that lattice by 90∘, it looks
exactly the same. Thus, a 90∘ rotation is a symmetry of the cubic lattice. We say
that it “maps the lattice onto itself.”

As we said, there are two types of symmetry operations: point symmetries and
translational symmetries. However, it is the ratio of lengths between the lattice
vectors and the ratio of angles between lattice vectors that matters in distinguish-
ing lattices. Lattices with the same ratios between angles and lengths are the same
lattice, even if the individual a’s, b’s, c’s, etc. are different! This is because the sym-
metry operations are the same. The lattice point symmetry operations in three
dimensions are:

Some choices of unit cells

bottom – construction of the

Wigner–Seitz cell. Notice that we

take the lines drawn to each of

the nearest neighbor sites and use

the perpendicular bisectors

to form the walls of the cell

Each of the cells has one lattice

point in it. This is clear in the W–S

cell, but the corner points of

the conventional cell count as

1/4th each

top – conventional

Figure 3.6 The construction of the Wigner–Seitz cell in two dimensions. The advantage to
using this primitive cell type is that it reflects the full symmetry of the Bravais lattice.
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1. Rotations through multiples (or multiples of fractions) of 𝜋 about the different
primary axes of the crystal.

2. Rotations plus reflections.
3. Rotations plus inversions.
4. Pure reflections.
5. Pure inversions.

These represent point symmetries, and they form a mathematical group: the
point symmetry group of the crystal. When we add in translational symmetries,
we get a full set of space group symmetries that tells us all the symmetries of a given
crystal. Remember, combinations of the symmetry operations are also elements
of the group.

Since this set of invariant symmetry operations is finite, so too is the number
of different types of lattices that can be constructed with them. Specifically, there
exist only a finite number of primitive lattice arrangements expressing unique
symmetries. Again, Bravais lattices are said to be “equivalent” if they have iso-
morphic space symmetry groups. Thus, in three dimensions:

1. EVERY Bravais lattice belongs to one of 14 possible symmetry groups.
2. When a basis of arbitrary symmetry is considered, we get 230 different indi-

vidual space groups. See references such as Ashcroft and Mermin [2].

Though most solid-state physicists likely do not carry an exhaustive catalogue
of all the crystal systems around in their head, it is important to know something
of the most common ones.

The difference between the Bravais lattice and the conventional lattice is
important here. You have seen this already in connection with the hexagonal
lattice of graphene. The primitive/Bravais lattice expresses the lattice symmetry,
and every point of the lattice is identical. The conventional lattice is easier for
us to “see” and includes nonequivalent lattice points. In three dimensions, two
common examples are face-centered cubic lattices and body-centered cubic
lattices both shown in Figure 3.7.

One wants to be a little careful however in imposing this appearance-based
description. The diffraction and electronic, optical, and other phenomena related
to the crystal lattice will reflect the symmetries of the Bravais lattice generally.
So while the conventional description helps you to understand the lattice, the
Bravais lattice is needed for calculations and the application of group theoretic
methods.

The lattice vectors (a,b,c) as marked in Figure 3.8 are a way of describing the
positions to each of the points of the lattice. For the square body-centered cubic
(BCC), we might typically think of a, b, and c in terms of their components on a
standard Cartesian coordinate system with unit vectors (x,y,z). In other words we
see a = (axx+ ayy+ azz) and so on. But of course we should describe vectors or
directions in terms of the Bravais lattice (a,b,c) coordinate system, where the vec-
tors are non-orthogonal unit vectors of that coordinate system. Because we wish
to keep our descriptions confined to the unit cell generally, we use a reduced inter-
cept index – the (h,k,l) designation as seen above – to identify points, directions,
and planes within a crystal. The brackets tell us what we are identifying: (h,k,l)
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Name
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ba

Triclinic a ≠ b ≠ c, α ≠ β ≠ γ

a = b ≠ c, α = β = γ = 90°
a ≠ b ≠ c, α = β = γ = 90°

a ≠ b ≠ c, α = β = γ < 120°

a = b ≠ c, α ≠ β = 90° γ = 120°

a = b = c, α = β = γ = 90°

a ≠ b ≠ c, α = β = 90°
1
2
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1

1

Monoclinic

Orthorhombic

Tetragonal

Cubic
Trigonal

Hexagonal

In the cubic system, three special cases are shown. The simple cubic, the body-centered cubic, and

the face-centered cubic systems all have equal a,b,c lengths and equal 90° angles. The table shows

the number of Bravais lattices for each lattice class

Parameters

β
α

γ

Figure 3.7 Ratios of lengths and angles define the possible number and type of point
symmetry operations that a crystal can allow. This lets us categorize the crystal into families.

The BCC and the unit vectors of

its Bravais lattice. Blue-edged atoms.

Gray/black body-centered atoms

a
b

c

Figure 3.8 A comparison of what we call the body-centered cubic lattice and its primitive
lattice can be surprising because they look nothing alike! The conventional lattice is like a
pneumonic – it is intended to help one remember where the atoms are.
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(0,1,0)

(001)

(1,0,0)

c

b
a

[1,1,1]

(1,1,1)
(1,1,0)

(1,0,1)(0,1,2)

Figure 3.9 Example: identifying the planes in a cubic crystal. Notice that the plane associated
with the 1/2 intersection along the b axis gets designated with a “2.”

means the plane of atoms associated with the [h,k,l] axis direction. {h,k,l} means
the set of equivalent planes to (h,k,l). These are known as Miller indices.

To index a set of planes or a direction in the crystal, as in Figure 3.9, the proce-
dure is relatively straightforward:

1. Find the intercepts of the plane with a, b, c axes. You should use primitive but
can use nonprimitive coordinates. This is where it can become confusing: one
must know how the crystal is being described. If there is not an intersection
with a specific axis, this axis index will be designated with a “0.”

2. Take the reciprocals of these numbers, and reduce to three integers having the
same ratio as the fractions. For example, the intercepts of plane shown in the
second from the right (bottom) are 0, 1/2, 1. The reciprocals are 0, 2, 1. To get
the same ratio between the numbers, we multiply by 1/2: 0, 1, 2. So the plane is
the (0,1,2) plane. It is associated with the [0,1,2] axis vector.

3. If a negative direction is expressed, you do that using a bar over the index
[h k l].

Pay attention to the word “index.” It is also used to associate diffraction spots
with the set of planes that caused them.

So, Figure 3.10 summarizes how to build a three-dimensional (3D) lattice:

1. Identify the Bravais or primitive lattice.
2. Overlay a set of coordinates onto this lattice.
3. Add a basis set of real atoms.

The primitive unit vectors can be used to describe where everything is in the
unit cell.

3.2.2 Surprises in Two-Dimensional Lattices

While, in 3D space, there are 14 possible Bravais space symmetry groups, in lower
dimensions this situation changes. In 2D, there are only five such space symmetry
groups allowed. In 1D, there is only one type of Bravais or primitive lattice.
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To build a real crystal, we begin with a mathematical abstraction of points

with a specific set of symmetries. Here is a square lattice. It is symmetric

under translations in any of the three principle directions, rotations of

multiples of 90°, inversions of all sorts. It is highly symmetric, and all of the

symmetries taken together form a point symmetry group

Once we have the lattice in mind, we add to each

lattice position some chosen arrangement of atoms.

This is known as the basis set. Notice that the

arrangement of the basis set can have a different

symmetry than that of the original lattice. Thus the

symmetry operations of the real lattice is a smaller

group than that of our mathematical construct

The mathematical construct is known as the Bravais

lattice of the system. The real lattice will have

symmetry operations that are some subset of those

expressed by the Bravais lattice

Next we add a system of coordinates. These are the lattice vectors, and they

allow us to know what direction in the lattice we are going (a,b,c). Because

the symmetry operations form a group, the labels chosen for the unit lattice

vectors is pretty arbitrary

c

b

a

c

b

a

Figure 3.10 A summary of lattice construction starting with the mathematical construct.

This seems simple enough. In fact, one might suspect that the lower dimen-
sions are easier to deal with than the higher ones. However, we can be deceived.
Why? It is because the lower-dimensional structures have the added freedom to
twist and turn into the higher dimensions, and this can introduce complex “con-
nectivity” between different volumes, areas, or lengths of the material. In other
words, we might construct a simply connected closed structure that expresses
the symmetries of the lattice locally (that is at the unit cell level), but globally it
might break translational and rotational symmetries. Hum, that’s odd: you mean
that we can translate the unit cell locally and get the lattice reproduced, but if
we do this across the entire material, somehow we do not? YES! Using nanoscale
self-assembly, such structures are now regularly achieved as we will see.

Let’s begin with a look at how the simple 2D lattice might work. We start by
enumerating the Bravais lattices of the second dimension.

These (Figure 3.11) represent the symmetries with which atoms can be
arranged in a plate, ribbon, or strip of a 2D plane. Notice that the translational
and point symmetry groups that describe the arrangement of atoms are all
perfectly well described. Curiously though, we can play a game of topological
complexity with such sheets of atoms. That is, in the 2D system, we can bend
the sheet into the third dimension and connect it to itself in a variety of ways. In
the mathematical sense now one local area of symmetry is connected to another
local area of symmetry across the object. In 2D materials this “connectedness”
or global topology can be simple loop of ribbon or nonsimple like a donut.
As the global topology becomes more complicated, properties at each of the
lattice sites, such a spin projection, can lose their translational invariance as it
once existed on the plane. Think, for instance, of the Möbius strip as shown in
Figure 3.12.
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Figure 3.11 The two-dimensional Bravais lattices.

An electron moving in this world sees a local environment, that is 2D (or 1D

depending on the width of the strip). But globally, the electron encounters a

topology that “twists” in a third dimension to allow for the unusual shape.

Topology and the Möbius StripMost kids are familiar

with the famous

Möbius Strip. 
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out flat.
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Figure 3.12 A topologically closed surface that can break global symmetries while
maintaining local atomic arrangement.
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Our physical example of 2D solids is the carbon allotrope: graphene, an abso-
lutely extraordinary material. However, there are a large number of 2D materials,
other than graphene and its relatives (like BN), that have been demonstrated.
In such materials, carriers can move anywhere in a plane, up to the edge of the
crystallite of course.

But can such structures as that of Figure 3.12 (or structures like it) occur nat-
urally or be synthesized? Flat ribbons and planes of graphene can, and will, have
defects in them. However, the carbon–carbon bond is extremely flexible, will-
ing to take on a wide range of bonding angles. This means that most defects
can be accommodated by this “flexibility” of bonding (depending on the type of
defect), resulting in little overall strain in the lattice. So the bonding hybridiza-
tion stays intact and the structure remains relatively flat. But this is not the case
with atoms that have more rigid bonding requirements. For such flat materi-
als, atomic imperfections lead to significant structural strain. Since the structure
consists only of a 2D set of atoms, there are no third-dimensional linkages to
take up this strain. This, in turn, affects the overall topology of the system by
introducing curvature locally. To see how this works, let’s consider the example
of Sb2Te3.

In the Sb2Te3 system [4], when it is grown from a solution of antimony trichlo-
ride (SbCl3) and tellurium dioxide (TeO2), if the temperature is high and the
growth is slow, the atoms have the time to add to the edges of the plate perfectly,
forming regular crystallites of two dimensions. Details of the growth and further
microscopy are shown in the references. One of these plates, a single unit cell
thick and many unit cells across, is shown in Figure 3.13.

However when the temperature and growth speeds (governed by the molarity
of the reactants) is just right, a defect occurs at the kernel where the plate is first

10 nm

1.00 um

Figure 3.13 A single, defect-free plate of Sb2Te3. The inset shows the atomic ordering using
high resolution electron microscopy. (Courtesy of ChaoChao Dun, Wake Forest University.)
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Figure 3.14 The “spiral” growth of Sb2Te3. Two examples are shown in panel (a) while a model
is presented in panel (b). Note that the upper and lower halves spiral in different directions.
(Courtesy ChaoChao Dun Wake Forest University.)

formed, leaving behind a localized strain. This turns into a dislocation of atoms
along the out-of-plane axis of the plate. To reduce the strain, the plate growth
proceeds along a spiral. Two of these spiraled plates are shown in Figure 3.14a, the
top with fewer “steps” and the center with more. The bottom of the Figure 3.14b
shows how the steps are arranging themselves during growth.

In systems that utilize atoms with rigid bonds, these spiral structures are
relatively common. Again, this can be understood as the introduction of local
strain due to defects. The spiraling planes emanating from the center of the
plate are simple extensions of an embedded screw dislocation at the core of the
structure. This is an ordered type of defect. However, the Sb2Te3 system is a
little unusual in that the screw reverses itself between top and bottom. That is, if
we take the screw to be right-handed on the top, then the bottom screw will be
left-handed! These type of complexities are far less common in materials such as
metals, but not unheard of.

So it is clear that these single unit cell thick plates can become large chiral
molecular objects with extraordinary topological complexity. And it is hypoth-
esized that electrons on such surfaces will acquire phase shifts associated with
the translation through 3D space. This global topologically induced phase factor
in the electronic wavefunction is the so-called Berry’s phase, and it is unique to
such objects as far as we know.
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3.2.3 The One-Dimensional Lattice

The simple lattice of the one-dimensional row, or line, of equidistant points
is shown in Figure 3.15. In a strictly one-dimensional lattice, there is no need
for considering the angular positions of the atoms. However, many “real”
one-dimensional substances have the atoms arranged in a zigzag line, as indi-
cated in Figure 3.16. Such a zigzag chain can “melt” by generating defects as
illustrated in Figure 3.17, where the strict alternation is disturbed. These defects
allow for rotation around a bond between. Thus, the one-dimensional object
can also “sample” a third dimension without being 3D itself, in the sense of its
electronic properties. This ability to “fold” into additional dimensions while
constraining carriers to a lower-dimensional space is this object’s topology. We
might ask if any complexities come along with this topology.

An electron moving along a lattice such as in Figure 3.15 would “see” equally
spaced potentials and be “unaware” of the third dimension outside of the chain.
If a field of some kind were to intersect with this chain, it would appear to the
electron as a localized potential. It might be reflected back along the chain or
tunnel through the potential barrier. It may also correlate with other electrons
along the chain to form excitations. This is, in fact, a fairly famous random walk
problem set before students of computational methods.

Figure 3.15 An idealized
one-dimensional lattice.

Equally spaced points

a direction

a

Figure 3.16 A real zigzag chain.
Notice we describe it using a
basis (circled).

a a direction

Decreasing radius of gyration

Figure 3.17 A zigzag chain with defects, twists, and turns. We must turn to other quality
factors to describe this. For instance, the radius of gyration lets us know the degree of coiling.
The radius of gyration is influenced heavily by the solvent used with the polymer. A good
solvent yields a large radius of gyration, while a poor solvent yields a small radius or tightly
bound coil.
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3.2.4 Polymers as One-Dimensional Lattices

In many compounds, like conducting polymers, atoms have the tendency to
pair up and form a zigzag as in Figure 3.16. We actually saw this in previous
chapters and will return to it in more detail later. For now it is the structure
itself we are interested in, and an electron in transit down such a chain will “see”
a one-dimensional path just as above. But the repeating potential and length
scales will be very different. Typically the lattice in this case is thought to be
composed of pairs of atoms, with each pair separated by the lattice constant. As
seen in the previous chapter, the lattice need not be just a pair of atoms, but can
be whole collections of atoms, as long as the conjugation (single bond–double
bond alternation) remains.

While it is intellectually interesting to consider these polymers as perfect, one-
dimensional chains, Figure 3.17 shows what actually happens when a solvent is
used to create or process a polymer. The twists and gyrations of the chain fill
space as though it were a ball. An electron moving along this chain might well
“forget” where it began. That means it would lose the phase information of its
wavefunction. The interaction of the polymer with proximate solvent molecules
determines just how coiled the polymer ends up being. The degree of coiling is
known as the radius of gyration. This radius is of primary interest to scientists
studying the processing of polymers.

As noted in Chapters 1 and 2, the example of a conducting polymer system with
alternating double and single carbon bonds is that of polyacetylene. The structure
is given in Figure 1.12 but is reproduced here in its schematic form in Figure 3.18.

For this one-dimensional system however, this simple schematic is not the
end of the story. As discussed, rotations about a bond are allowed in many
systems, including in polyacetylene. In fact, such bond rotations can occur in
an ordered way, leading to alternative “crystal structures” for the same material.
Thermodynamic internal energies dominate the formation of these equilibrium
configurations. Experimentally, these equilibrium configurations in a given
polymer sample can be identified rather easily through the exotherms and
endotherms of a differential scanning calorimetric (DSC) curve (heat vs. temper-
ature). In the case of polyacetylene, there are two well-known forms the structure
could take. They are shown in Figure 3.19. The question for the experimentalist

a

Figure 3.18 The schematic structure of polyacetylene along with its lattice. Notice the lattice
points do not fall on every carbon. Rather, there is a two-carbon (along with some hydrogens)
basis.
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Figure 3.19 The difference between cis and
trans polyacetylene is the rotation of a few
bonds. This gives different crystal structures in
one dimension, though the Bravais lattice
stays the same.
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is whether or not the different phases of the polymer structure will alter the local
environment a conducting electron might see.

As noted in Chapter 2, the one-dimensional nature of such systems as
polyacetylene means that the properties of the material, especially the elec-
tronic transport characteristics, are extremely sensitive to defects (or mistakes)
within the lattice. Thermodynamics tells us that there will always be some
mistakes. Consider only an occasional bond rotation within the lattice as seen in
Figure 3.19. It makes sense then that our expectation of the electronic properties
of such a system of randomly distributed defects is that they are dominated by
the electronics of the individual segments as though they are isolated. In this
way the prediction of phenomena in one dimension can easily be as complex as
that of a 3D system.

3.2.5 Carbon Nanotubes as One-Dimensional Lattices

Carbon nanotubes were introduced in the last chapter. But in the context of the
current discussion, it is important to take another look at its dimensionality.
Recall that the nanotube is constructed by rolling the honeycomb lattice of
graphene seamlessly into a tube. Specific points of the lattice roll onto themselves
symmetrically (A → A′ and B → B′) as seen in Figure 3.20. The lattice vector
connecting A and A′ or B and B′, respectively, is called the roll-up vector R; its
components (n,m) are written in terms of the unit vectors and are called the
indices of the nanotube. The orientation of this roll-up vector is given by the
chiral angle (see Eq. (2.3)).

The “unit cell” of the nanotube is the part that reproduces itself along the trans-
lation from points A to B. But notice that this depends on the roll-up vector R and
its angle rather drastically. The (2,2) nanotube shown at the left has relatively few
basis set atoms in its unit cell (given by counting up the atoms in the shaded area),
whereas the (3,1) nanotube in the center has quite a large number of basis atoms.
The lattice parameter (the distance along the nanotube that one must travel to
repeat the unit cell) has also changed. Notice too that the (3,3) nanotube on the
right has a greater diameter. This also makes the basis set larger. However, each of
these nanotubes has a one-dimensional lattice. They have one Bravais lattice with
one symmetry group representing the set of operations that take the primitive
lattice onto itself.
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Figure 3.20 Nanotubes are formed by rolling equivalent lattice points onto each other along
the vector R. The “unit cell” for hypothetical (2,2), (3,1), and (3,3) nanotubes is shown.

Nanotubes can also have kinks, twists, missing or substituted atoms, and other
defects that will effect electronic and thermal transport properties, just as in
the case of polymers. As it turns out they also have strong coupling between
charge carriers and the lattice – a fact that was missed or ignored by the sci-
entific community early on. So in many ways the nanotube lattice has the aspects
of a polymer but with this extra “mini-dimensional” aspect of chiral angle.

3.3 Bonding and Binding

We note that we have not said much about how the real atoms “talk” to each
other, that is, how they share electrons and how they interact. That is because
when speaking of organizational symmetries, we really don’t care. Lattices are
essentially mass correlation functions of a sort. They tell us where the atoms are.
However, it is through these interactions that dimensional phenomena will arise,
so we will have to specify: what makes bonds rigid or flexible? What gives the
solid and low-dimensional structures their shapes? What tells the atoms where
to go? These questions are afforded a little more attention in the study of low-
dimensional materials than in 3D systems because only a few nanoscale, low-
dimensional materials are found in nature. Since most are made artificially in a
lab, the low-dimensional scientist is rarely working with the most stable form of
the element or elements.

So, in lower dimensions, the material system’s topology is sensitive to defects,
bond rigidity, and local minima in formation energies. How do we know that,
given certain conditions during synthesis, we will end up with a carbon nanotube
and not a lump of coal? The answer lies in our first-year chemistry course.

Bonding is generally thought of in terms of “bonding character”: (i) weak or van
der Waals, (ii) ionic, (iii) covalent, (iv) metallic, and (v) hydrogen bonded. There
are other ways to classify as well, but these are quite useful. They represent the
most common ways of modeling assemblies of atoms in a solid. Introducing the
physical picture that we “see” in our minds for each of these is not nearly so hard
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Figure 3.21 A schematic potential well between two atoms that can vary with radial r, as well
as azimuthal and polar angles: 𝜃, 𝜙.

as trying to come up with mathematical models that accurately capture observed
behavior. What we would like is a way to determine the overall equilibrium struc-
ture from the lattice to the crystallite. The route to this is through the total internal
energy of the system, U , as seen in Figure 3.21. Presumably, this extrinsic param-
eter will include the surfaces, grain boundaries, inclusions, and defects as well as
the arrangements of all atoms. The absolute minimum of this U , at a given tem-
perature and pressure, will predict for us the equilibrium structure of a system.

However, the devil is in the details as they say. To get U we have to start with the
potential between individual atoms, u. But of course this is the bonding we dis-
cussed above. We approach this generally by taking the sum of all the potentials
over all atoms, adding up the energies of the bonds, and then including special
sites such as the surface sites, defect sites, edge sites, etc. For macroscopically
large materials, we can ignore the contributions these might make to the lattice
sum. However in the nanoscale, they count in a major way. This is because there
may be as many surface sites as bulk sites in a nanoparticle.

To build a “picture” in our classification scheme, we start with covalent
bonding as found in carbon compounds, Si, and other semiconductors. The
associations atoms choose to make between themselves using these mechanisms
typically have to do with valence electron shells and how they are filled. The shells
are filled or emptied by charge sharing or charge transfer between neighboring
atoms – this means an overlap in the electronic wavefunction somehow. Since
the atomic orbitals doing this “sharing” begin (before condensation) as quantum
eigenstates of the atomic potentials associated with individual nuclei, the
electrons involved with have specific angular momentum and energy characters:
s, p, d orbitals. When atoms are brought together, the individual characters and
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the willingness of different characters to mix (hybridization sp2, sp3, etc.) will
determine the complex potentials between the atomic nuclei that yield the new
eigenstates. So, clearly, the scalar potential field between neighbors in a crystal
can have not only a radial dependence (distance) but also an angular component
to it. This can lead to a number of positional local minima in forming bonds,
giving rise to a myriad of low-dimensional, nanoscale structures, as well as to
different forms of crystals depending on the elements used. We will get very
detailed about this for the one-dimensional carbon system in later chapters.

Ionic bonding like that of the salts NaCl or KBr is simply the extreme in this
electron transfer process wherein the electron of one atom has been so com-
pletely transferred to its neighbor as to make them both ions. While the exact
nature of interatomic potentials might be difficult to guess for nonionic covalent
bonding, the ionic bond is, in fact, quite easy to guess since the potential will
be dominated by the electrostatic interactions of the ions. Madelung worked out
a nice approach to this by considering only the Coulomb attraction and some
exponential repulsive core potential:

Uij = 𝜆e−rij∕𝜌 ± q2∕rij (3.2)
rij is the jth nearest neighbor distance from the ith ion in the lattice, sometimes
written as Rpij with R being the lattice constant. q is the charge of the ions; 𝜌 and
𝜆 are constants to be determined (fitting parameters). The lattice sum becomes

U = 1
2
∑

i,j
Uij = N

∑

j
(𝜆e−rij∕𝜌 ± q2∕rij) (3.3)

which represents the total lattice energy. This is frequently written as
U = N(z𝜆e−R∕𝜌 − 𝛼q2∕R) (3.4)

𝛼 =
∑

j≠i

±1
pij

(3.5)

𝛼 is referred to as the Madelung constant.
Curiously some noble gasses and large neutral molecules can also form crystals

under the right conditions of pressure and temperature. Layered crystals such as
graphite should be included in this list, though in plane they are covalently or
ionically bonded usually. We call these van der Waals bonded solids (a special
case of Casimir forces), and they are held together by weak interatomic forces.
Generally we can break the potential contributions down as shown in Figure 3.22.

The dispersive part consists of spontaneous dipole induction due to quantum
fluctuations. Fritz London [5] showed that these potentials typically follow
a ∼ C/r6 form as well. Thus the potential in such systems is typically modeled as
a Lennard-Jones potential:

VvdW(r) = −A∕r6 + B∕r12 (3.6)
where the 1/r12 is derived from Pauli exclusion repulsion at very close distances.
The lattice sum then becomes

Vtotal =
(1

2
N
)[

∑

j

(
B

pijR

)12

−
∑

j

(
A

pijR

)6
]

(3.7)
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Figure 3.22 The van der Waals interaction can be thought of in terms of dipole–dipole
interactions plus interactions between dipoles that have been induced between the atoms of
a layer, either through a permanent dipole interacting with a polarizable species or through
quantum fluctuations of the two species.

where pijR is the distance to the jth nearest neighbor from the ith atom. This
distance is written in terms of the lattice parameter R. N is the number of atoms
and so this gives the total extrinsic energy of the system. The trick is now to find
the A’s and B’s and perform the sum.

In our examples here, the energy per bond is determined according to a model
that is guessed based on how electrons might be shared or interact. A potential
minimum is calculated, and this is summed across the whole of the crystal to
achieve the total internal energy. In large 3D crystals, this task can become cum-
bersome, and there are issues of summation convergence, long-range interac-
tions, and multiple bonding types that come into play. However, at the nanoscale,
with countably large numbers of atoms in a particle or object, the problem can
be far more manageable.

To see how this might work, let’s consider a simple but effective example: the
one-dimensional salt crystal. In this example we will consider alternating ions of
Na and Cl, interacting with each other along a one-dimensional strand. This is
shown in Figure 3.23. Since this crystal is ionic in nature, we will take the attrac-
tive interaction between atoms to be that of the Coulomb field∼1/R. We will take
as the repulsive part of the potential (the part that keeps two ions from occupying
the same space on the strand) to look like eR: (as in Eq. 3.2). We also anticipate that
the total force repelling the ions will be related to the Pauli exclusion of electrons,
so the number of electrons participating must also enter into it; to do this we add
an atomic weight term Z. We might also argue that this includes the repulsion
of the ionic nuclei. Notice too that we have used 𝜆 and 𝜌 as “strength constants.”



98 3 Order and Symmetry: The Lattice

2
Energy vs. Bond length

1.5

1

0.5

0

P
o

te
n

ti
a

l 
e

n
e

rg
y
 (

a
.u

.)

–0.5

–1

–1.5

–2
0.4 0.5 0.6 0.7

–1/r6

1/r12

0.8

Internuclear distance (a.u.)

Bond strength at equilibrium

length

0.9 1

Figure 3.23 A graphical representation of the Lennard-Jones potential.

𝜌 represents roughly the radius of the ion since the strong repulsion starts some
distance out from R = 0.

Next, we must find the equilibrium distance where dU/dR = 0. We call this
value of R; R0.

The one-dimensional ionic crystal (NaCI)...
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Figure 3.24 Metallic bonding using background electron clouds.

Metallic bonding is rather more subtle than the lattice sums above. In the
case of metals, the atom is relatively willing to give up outer shell electrons as
in Figure 3.24. This might occur for different reasons as, for instance, between
the examples of Ag or Au and alkali metals like Cs or K. Nevertheless, this
willingness to release an electron results in a large collection of correlated
electrons contained within the boundaries of the solid: the so-called Fermi sea.
Now we have used the word correlated here, and by that we mean to imply that
this entire sea of electrons is a single eigenstate of the macrosystem wherein the
wavefunctions of individual particles have become so delocalized that to speak
of an “individual electron” is a little misleading. The electrons are participating in
a many-body wavefunction that lowers their imagined individual energies. Thus,
this “gas” or “sea” of electrons does not disperse under their own electrostatic
interactions. Rather the balance of ions in the volume plus their collective
behavior prevents this.

However, the ion background doesn’t delocalize as easily as these very low
mass electrons. They are attracted to the volume of negative charge, that is, the
Fermi sea, but they pack into this charge as localized ions. This appears as a force
between the ions, holding them together, and we refer to this form of “bonding” as
metallic bonding. As one might imagine a reasonable attempt at computing self-
energies (U) perhaps should involve the energies of a many-body quantum state,
and there are different approaches to this. But it is the picture of the bonding
mechanism that interests us here.

The hydrogen bond is really a modification of the van der Waals and the cova-
lent mechanisms that is made possible when hydrogen is participating. It comes
from the electrostatic attraction between two polar groups: one that occurs when
a hydrogen (H) atom is covalently bound to a highly electronegative atom such
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as nitrogen (N), oxygen (O), or fluorine (F). The other is any highly electroneg-
ative atom nearby. The two polar groups experience each other’s electrostatic
fields, and there is a resulting force. This bonding mechanism may not really
seem that different from what we have already discussed – again electrostatic
energies brought about by the coordination of electronic positions. However, its
importance is to suggest that materials can be held together by more than one
mechanism and that the blending of bonding types can lead to additional internal
forces, as seen when polarization occurs between the constituents of the crystal
basis. In the many different materials introduced in Chapter 2, this has already
been seen, though not emphasized.

But how do we know when we have it correct? The approach we have taken
relates the bonding energies in a solid to the internal energies that form the
ground state of the solid. This is true in cases such as 3D polycrystalline
systems, when the ordered lattice sites are far more numerous than the special
sites such as grain boundaries and surfaces. In such cases, these bonds – the
attractions between the electrons and nuclei of the collection of atoms – are
responsible for the cohesion of the solid itself. Generally, crystals (solids) are
formed when the total energy of the collection of atoms (kinetic+ potential)
at infinite separation is greater than the total energy when the atoms are
condensed together. The difference between the two (free atom energy) and
(condensed system energy) is >0 and is referred to as the cohesive energy
of the structure. Here we have implicitly made the connection between the
energy of cohesion and the modulus of the crystal or structure. We can con-
nect the two through a measurement of the bulk modulus. The bulk modulus
is defined as

B = −V dP∕dV (3.8)

where V is the volume of the crystal and P is the pressure. The so-called com-
pressibility is the reciprocal of the bulk modulus. At absolute zero (or near it), the
entropy is constant, and the thermodynamic identity dU = P dV is the change of
internal energy of the crystal corresponding to a change in volume. Thus we get
dP/dV = d2U/dV 2 and

B = V d2P∕dV 2 (3.9)

The higher the bulk modulus is, the stiffer the material. Here we are making
the approximate identification of this thermodynamic internal energy U with the
overall crystal cohesive energy.

So, to get some idea of what this U is, we must first come up with some sort of
pairwise potential function u(r,𝜃,𝜙) with which we could approximate the bond-
ing. Once the atoms are relaxed into the minimum pairwise potential position,
we could then sum that energy over the whole crystal. And a measurement of the
bulk modulus could tell us if we are right!

It is important to note that this does not apply to yield strength of a material
since that typically is dominated by defects and grain boundaries. This notion is
particularly nuanced as one approaches the nanoscale where there might be very
few if any defects in the structure being tested. Thus, objects like a carbon nan-
otube can appear to be very strong because its failure relies on the direct rupture
of carbon–carbon bonds.



3.4 Spatial Symmetries Are Not Enough: Time Crystals 101

3.4 Spatial Symmetries Are Not Enough: Time Crystals

This chapter has presented a few details of how the observed symmetries of a
general array of crystal lattice points could pertain to properties in real-world
materials. These spatial arrangements of points and the symmetry operations
that repeat them define crystals, as well as ordered nanoscale objects, rather com-
pletely. Or do they?

There is, surprisingly, another way to see arrangements of points, that is,
arrangements in time. Frank Wilczek of MIT first proposed the idea, and it
imagines a type of matter that exhibits a sort of fundamental oscillation over
time. This means that some property of the material goes through a repeating
cycle. Moreover, it represents a “crystal” by analogy to space crystals that have
regular repeating units, or periodic cycles, of atoms in space. Molecular patterns
repeat over and over along their lattices. Time crystals repeat some internal state
of the system with constant separations in time [6].

Wilczek’s model used charged particles in a superconducting ring to break con-
tinuous time translation symmetry. This symmetry breaking simply means that
the system will look different on a global level from one instant to the next. This
is quite different from a normal matter in thermal equilibrium, which has only
random internal motion. These are the random motions of the atoms on their
lattices from place to place. Notice though that in thermal equilibrium, from one
instant to the next, random motion stays the same (random). This means sim-
ply that in regular matter, in equilibrium, statistical properties stay the same over
time. Wilczek’s system breaks this symmetry because there are global statistical
differences from one instant to the next. That is, nonrandom patterns in time
emerge for statistical properties.

Now, Wilczek’s proposal was for a substance whose ground state was in perpet-
ual motion while in equilibrium. And this would indeed break time translational
symmetry. But it was quickly recognized by Watanabe and Oshikawa [7] that,
based on fundamental considerations, time translational symmetry cannot be
broken by a quantum system in thermal equilibrium. So, Yao et al. [8] decided
to investigate what might happen when the thermal equilibrium constraint is
relaxed. To do this they proposed an external input of energy (thus, not in ther-
mal equilibrium) to force the oscillating states. Their calculation aligned a set of
ions with specified spin states: a one-dimensional spatial lattice of ions. In such
a lattice, spins next to each other like to align or anti-align due to the interac-
tions of the local magnetic fields. In fact, the aligned and anti-aligned states are
lower energy than random alignment (see Chapter 11). The next step is to cause
the spins to flip back and forth with the input of a collinear laser beam. This
spin-flipping occurs because of the sinusoidal changing magnetic field that passes
by each spin as the wave moves by. Thus, the spin-flip oscillation will be deter-
mined entirely by the period of the laser (it will actually be an integral multiple of
the driving frequency). This is the energy that Yao et al. proposed to pump into
the system to take it out of equilibrium.

However once the spin wave is established using the laser (prepared it in
an excited state), Yao et al. proposed that it should continue and be sustained
internally. Specifically, it should resist any change in the input frequency of the
laser. Another way to say this is if the input E&M field is randomized, the spin
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Figure 3.25 A time crystal phase diagram as imagined by Yao et al.

wave should “ring down” for at least a little while. Using this approach Yao et al.
were able to construct a “phase diagram” of the system that plots the interaction
strength between atoms with imperfections in the spin-flip driving signal (in
terms of frequency). An idealized drawing of such a phase diagram is presented
in Figure 3.25 (after Yao et al.).

The diagram of Figure 3.25 is easy to read. On the right-hand side (thermal),
thermal motions dominate, and stochastic motion is always the answer. On the
upper left, the chain of spins follows the laser’s frequency no matter what, per-
fectly time symmetric. However in the lower triangle of the graph, the ion spin
does maintain its own rhythm against the changing frequencies of the laser. Thus,
it has an internal time oscillation of the spin variables even when the driving force
that first prepared this state is randomized.

So, Wilczek proposed it, and Yao showed us how to build one. In 2017/2018
time crystals were first realized in the lab by several different teams. Their
approaches were quite divergent. The demonstrations ranged from Yao’s original
idea of linking a row of atoms, from ytterbium held in an ion trap [9] to mono-
ammonium phosphate, crystals found in children’s chemistry sets, and diamond
[10] with dilute magnetic defects. These experiments have just opened the door
to these nonequilibrium solids with possible exciting applications in areas such
as quantum computing by allowing for stable quantum memory elements. But
to be sure, crystals can, in some cases, be considered ordered arrays in four
dimensions, not just three.

3.5 Summary

The standard approach to categorize crystalline materials is to use point sym-
metry groups. This science is called crystallography. There are a finite number of
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point symmetry groups, and these categorize all known Bravais crystal systems for
any given dimension. When a basis is added to the Bravais lattice, the symmetry
group is further differentiated.

This scheme fails to easily capture all that we need to know about the sym-
metry and structure of low-dimensional material structures. Polymers with their
one-dimensional lattice can twist and turn randomly into the third dimension.
Nanotubes have an ordered “mini” dimension that gives rise to chirality, and 2D
crystals can express the topological complexities of connectivity. Each of these
examples requires additional information about the object to understand how its
atomic arrangement yields a given global topology. That doesn’t mean that the
mathematical apparatus of (a,b,c)’s cannot be used to describe the objects, just
that it must be modified so that both local symmetries and global symmetries are
captured.

Highly ordered arrangements of atoms into a crystal are based upon bonding
interactions. These interactions between components seek the minimization of
internal energy for the crystal. This internal energy can be calculated in terms
of lattice sums, which are useful in a variety of thermodynamic entities. How-
ever, low-dimensional objects frequently involve the bonding of atoms that are
not fully coordinated, leading to local minima in the crystal energy. These com-
plexities can stabilize a wide assortment of nanoscale structures: from fullerenes
to graphene, to nanotubes, and to diamonds.

Exploring Concepts

1 The body-centered cubic (BCC) lattice: Also known as the cubic I structure
(I is for the German: Innenzentriert), this is a cubic lattice with an additional
lattice point at the center of the cell (Figure EC3.1).
As is often the case, the presentation of this lattice is one that is not prim-
itive. And we would like to understand the lattice from its basic symmetry
properties, meaning the primitive or Bravais lattice (Figure EC3.2).

a

a
aa

a/2

a

3D projection Top view

Figure EC3.1 A standard projection image of the cubic I symmetry. This is the “conventional
unit cell” as described in the text.
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a

a

a

Figure EC3.2 Imagine stacking these unit cells together. Here we have place one on top of
another, but there are cells in front and back as well.

Now remember that our lattice vectors can be written simply as

[u, v,w] = ua1 + va2 + wa3

For the set of cubic crystals, the choice of the ai’s is particularly straightfor-
ward. Let’s use Cartesian: [x,y,z]. And to simplify further, each coordinate is
some multiple or integral fraction of a single parameter a, since the crystal
is of cubic symmetry. This means we write [x,y,z]= [n1, n2, n3] where the n’s
are merely the number of steps taken in the a1, a2, a3 directions.
(a) Now, for this simple system, notice that we have a similar situation to

what we faces with hexagonal graphene. That is, we have two different
and nonequivalent lattice positions. The local environments of the cor-
ners and the central positions look different to a local observer. Show,
by drawing out explicitly, that we can treat this as two interpenetrating
simple cubic sublattices with

Rcorners = [n1, n2, n3]
Rcenter = [n1, n2, n3] + (1∕2) [1, 1, 1]

We now move from the conventional cell to a more primitive lattice. Show
that the primitive lattice vectors can be written as

a1 = [1, 0, 0]
a2 = [0, 1, 0]
a3 = (1∕2) [1, 1, 1]
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Check to see that any combination

R = n1a1 + n2a2 + n3a3

with the n’s as integers gives a point within our BCC lattice.
(b) Draw the Wigner–Seitz cell for this lattice, and give the coordination

number (the number of nearest neighbors for any point).

2 The face-centered cubic (FCC) lattice: The face-centered cubic system is
another cubic lattice with an additional lattice point added to the faces of
cube. A 3D projection of the conventional cell is given in Figure EC3.3.
Following the Exploring Concepts (Exercise 1): for the BCC, we might see
this lattice in its conventional form as a cubic lattice and some number of
basis atoms.
(a) Write down and draw this interpenetrating sublattice system using mul-

tiple unit cells as in the case of Figure EC3.2. Using Cartesian coordi-
nates in analogy to the BCC case, write down the coordinates to equiv-
alent sublattice components: Rcorner, Rface-xy, etc.

(b) Now we move to the primitive lattice. What are the primitive lattice vec-
tors in terms of these coordinates? Show that these work.

(c) Finally, determine and illustrate the Wigner–Seitz cell, and calculate the
coordination number.

3 The Zincblende structure: ZnS typifies the zincblende structure, but the
structure is found in many more compounds. Shown in Figure EC3.4 is a
top view of such a structure.
Unlike the BCC and FCC examples in the previous two problems, this struc-
ture is associated with two different atomic species. If we consider only a
single species of atomic constitutive, the structure is known as diamond
and is exemplified by Si and C.

Figure EC3.3 The FCC
conventional cell. Notice that
the additional atom to the
cubic lies along the faces.

a

a

a
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Figure EC3.4 The
zincblende structure. The z
values of the structure are
shown on the lattice sites
with those unmarked at
z = 0 or z = a.

Using the methods of the previous exercises, we are going to examine the
structure.
(a) From the coordinates we have given, draw out a 3D projection of the

zincblende structure, and provide the coordination number for the
inequivalent sites.

(b) Draw several such conventional cells stacked together as we have done
above, and then show how to construct a primitive lattice for this system.
Determine and draw the Wigner–Seitz cell.

(c) Write out the form of the coordinates as they appear in the translation
vectors (again following our lead above), and demonstrate the corre-
spondence between the unit vectors for the primitive lattice and the
conventional lattice. What is the natural choice of sublattice or basis to
simplify the description of the conventional lattice?

4 The hexagonal close-packed structure (HCP): A curious but common
enough structure found in nature is the hexagonal or HCP structure.
As can be seen in Figure EC3.5, it is constructed of alternating layers usually
marked A, B, and C or as here 1, 2, and 3. We have shown the ABABAB
layering.
(a) Using this conventional cell, construct unit vectors, and provide coor-

dinates for atomic positions as we have done above.
(b) Now imagine and draw how you might rotate layer 3 to form a C fitting

where the intercellular triangle of atoms is pointing upward to get
an ABCABCABCABC stacking. These are both possible stackings of
this cell.

(c) For both the ABAB and ABCABC stacking of the unit cells, determine
the primitive lattices and the Wigner–Seitz cells. Draw these in both the
projected and top views.
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Layer 2
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Layers 1 and 3

Top HCP3D projection HCP

Figure EC3.5 The HCP, ABABAB stacking of atoms.

5 Crystal planes: In three dimensions, we use a system of coordinates (hkl) to
specify a lattice plane. However, if we use different brackets {hkl} or [hkl],
we can also specify a set of equivalent planes of the crystal or direction in
the crystal, respectively. Consider the (001) and (100) planes of an FCC lat-
tice (making reference specifically to the conventional lattice). What are the
indices of the same planes using the primitive axes?

6 Penrose tiling: Look up a two-dimensional Penrose tiling (quasicrystal). Can
a Wigner–Seitz cell be constructed for such a lattice? Why or why not?

7 Molecular solid: Sucrose, as shown in Figure EC3.6, is a large, sweet
molecule. Surprisingly this large nonsymmetric molecule makes a crystal!
It does this by fitting together with van der Waals forces. This is an example
of what we mean by a molecular solid, as opposed to NaCl, which is of
course also composed of the NaCl molecule. In a large laboratory beaker,
create a supersaturated solution of pure cane sugar in water. Insert a
clean stick or string, and allow the solution to settle out in a warm place
over several days, forming sugar crystals on the insert. Select one of the
better-formed and larger crystals. Measure the hardness using an Instron®indenter. See why they call it rock candy? Now shine a light beam from a
laser through it. What happens?

8 Cohesive energy: The Lennard-Jones potential is a well-known interatomic
interaction model used in describing the cohesive bonding of lattice
structures broadly. As we have noted already, it consists of two parts:
(i) a long-range attractive interaction based on modified or shielded
Coulombic forces and (ii) a short-range repulsive interaction that keeps
the atoms apart and is based in Pauli exclusion. This phenomenolog-
ical expression of the potential is surprisingly useful and is generally
stated as

U(R) = (B∕R)12 − (A∕R)6
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Figure EC3.6 Sugar.

Now typically the A and B are redefined as B = 4𝜀𝜎12 and A 4𝜀𝜎6. Then if
one wants to get a total internal energy of cohesion,

Utotal =
1
2

N(4𝜀)
∑

j

[(
𝜎

pijR

)12

−
(

𝜎

pijR

)6
]

Notice here, to work this integral understanding, pijR is essential. It is the
distance between an ith atom and any other atom, j, expressed in terms of
the nearest neighbor distance R. The sum worked over only j, with the 1/2N
being used to express the sum over all the i’s without double counting. This
really means that the (𝜎/R)6 and (𝜎/R)12 terms are dependent on the kind
of atoms used, whereas the (1/pij)x terms are purely geometrical in nature.
They depend on how the balls are stacked together only. Let’s see how this
might be for a 2D square lattice.
(a) Using purely geometrical arguments, see if you can determine the p

terms out to pi5. From this do you expect the sum
∑

[(pij)−12 – (pij)−6] to
converge as j→∞? Do you need more terms?

(b) In 3D these sums require a great deal of care. For the FCC lat-
tice they have been worked out to be

∑
(pij)−12 = 12.13188

and
∑

(pij)−6 = 14.45392, whereas for the BCC lattice they are∑
(pij)−12 = 9.11418 and

∑
(pij)−6 = 12.2533. The HCP lattice is given

as 12.13229 and 14.45489, respectively (ABABAB stacking). Consider
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Figure EC3.7 A 2D square lattice highlighting the pij terms. Notice the similarity of this with
the correlation function we mentioned in Chapter 2. Also notice that the summed potential
includes the same (1/pR) dependence even though there are atoms between the ith atom and
the jth interaction. In fact this is accounted for by the fact that a pure Coulombic potential is
not used but rather a screened one.

now a lattice of weakly interacting neon that is well suited to such a
potential. It is placed under pressure and low temperatures such that
it condenses and forms a lattice. Make an analysis of the lattice sums
using the numbers given, and determine the most likely structure that
the neon will take.

9 Ionic crystals: In ionic crystals (NaCl, KBr, ZnS, etc.), the mathematics of
lattice sums behaves in a similar manner to that of Figure EC3.7. However,
as we have noted, the interaction strengths have changed. There is also the
need to account for positively and negatively charged ions within the lattice.
These two complications are the topic of this exercise.
The electrostatic components of the total internal energy are known as the
Madelung energy, and it dominates the energy landscape of the ionic crystal;

Uij = 𝜆 exp(−rij∕𝜌) ± q2∕rij

Notice here that we have used CGS units for simplicity and the plus/minus
alteration is meant to account for the alternating nature of the ions of the
crystal. Introducing the rij = pijR as we did before, we get

Utotal = N[z𝜆 exp(−R∕𝜌) − (𝛼q2)∕R]
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Z is the number of nearest neighbors of any ion, and 𝛼 =
∑

j
′ (±)/pij is the

Madelung constant. In such a theory 𝜆 and 𝜌 are parameters, and 𝛼 is dif-
ficult to compute or determine since it doesn’t converge very quickly. For
some equilibrium separation of the nearest neighbor ions, R0, 𝜌 is typically
∼0.1R0. This is the distance of short-range repulsion, and it holds for very
many ionic crystals. Note that we have used NUi = U total for N ions of a
given charge.
(a) Show that if we use N dUi/dR= 0 to define R0 (the equilibrium distance),

we can write

Utotal = −[N𝛼q2∕R0][1 − 𝜌∕R0]

where −N𝛼q2/R0 is known as the Madelung energy.
(b) For LiF take R0 ∼ 0.2014 nm, z𝜆∼ 0.296× 10−8 erg, and 𝜌∼ 0.0291 nm.

Calculate the lattice energy compared to free ions in kcal/mol (answer
is 242.2 kcal/mol). How high of a temperature would you have to go to
evaporate LiF in a vacuum chamber (10−6 Torr) if, say, you were making
a thin film organic light emitting device (OLED)?

10 Solid hydrogen: Assume spherical H2 and Lennard-Jones parameters of
𝜀 = 50 × 10−16 erg, 𝜎 = 0.296 nm. Show that the calculated FCC cohesive
energy in kJ/mol is much more than the measured 0.751 kJ/mol. Why?

References

1 Silinsh, E.A. (1980). Organic molecular crystals. In: Springer Series in
Solid-State Sciences, vol. 16. Heidelberg: Springer Verlag.

2 Ashcroft, N.W. and Mermin, N.D. (1976). Solid State Physics. New York:
Sounders College Publishing.

3 Müller, U. (1982). Anorganische Strukturchemie. Stuttgart: B.G. Teubner.
4 Dun, C. et al. (2017). Self-assembled heterostructures: selective growth of

metallic nanoparticles on V2–VI3 nanoplates. Adv. Mater. 29 (38): 1702968.
5 Heitler, W. and London, F. (1927). Wechselwirkung neutraler Atome und

homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik. 44
(6–7): 455.

6 Wilczek, F. (2012). Quantum time crystals. Phys. Rev. Lett. 109: 160401.
7 Watanabe, H. and Oshikawa, M. (2015). Absence of quantum time crystals.

Phys. Rev. Lett. 114: 251603.
8 Yao, N.Y., Potter, A.C., Potirniche, I.-D., and Vishwanath, A. (2017). Discrete

time crystals: rigidity, criticality, and realizations. Phys. Rev. Lett. 118: 030401.
9 Zhang, J. et al. (2017). Observation of a discrete time crystal. Nature

543: 217.
10 Choi, S. et al. (2017). Observation of discrete time. crystalline order in a dis-

ordered dipolar many-body system. Nature 543: 221.



111

4

The Reciprocal Lattice1

There are two ways that the crystal lattice is typically used. The first is as a coor-
dinate system for atomic position. In other words, it is a set of spatial coordinates
that describes the mass correlation function. You have already seen this; when
describing any crystalline compound, we usually provide the positions and rela-
tive distances between the atoms as though we could look into the volume and
see them there.

A second important use of the lattice is to provide a frame of reference for things
that move within it. Many times motion in the lattice of a crystal is restricted,
such that de Broglie wavelengths correspond to interatomic spacings. That’s right;
electrons, holes, lattice vibrations, and collective excitations within the lattice
can frequently be required to take on only discrete values of velocities. The lat-
tice’s spacings set the rules for these discrete values (Section 4.1 below). So, to
describe dynamics, a convenient coordinate system for a given crystal might sim-
ply be an array of all the velocity or momentum values that can be realized in
that crystal.

As we will see, there is an easy mathematical bridge between the real space
and the “velocity points” lattices. They are the Fourier transforms of each other.
To see why we use the spatial coordinates for mass correlation and the Fourier
transform for everything else will take a little work and is what this chapter is all
about. But to start with, we will not call the second coordinate system the Fourier
transform any further. Instead we will use the word reciprocal lattices, and these
are constructed in reciprocal space just as lattices sit in real space.

4.1 Describing Objects Using Momentum and Energy

The concept of the reciprocal lattice was first developed to describe X-ray diffrac-
tion patterns of crystals, and reciprocal space is now used to describe all wavelike
phenomena in a crystal. It has been mentioned in Chapter 1, (open Fermi sur-
faces) and in Chapter 2 (the Kohn anomaly). Reciprocal space is not used to
describe the position of objects, but to characterize the nature of mobile objects

1 The treatment in this chapter follows the derivations of Kittel, Ashcroft and Mermin, and Simon in
its definitions and examples [1]. We have added demonstrations of these systems in low dimensions
that are traditionally not included in these texts.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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independently of their actual position. For example, consider cars traveling along
a highway. To characterize the cars we could specify position at given, equally
spaced, times along the path. This is like the real space lattice in that it tells us
positions of things relative to some metric (in this case time). However to cap-
ture the dynamics of the car, which is how it got from point to point, we could
have specified a velocity at each position or each time. This too helps us know the
manner in which the car moved. Naturally, one can work back and forth between
the pictures (Newton’s laws), but there are times when the ease of a specific choice
of description presents itself. This is exactly the case we find ourselves in trying
to determine the behavior of electrons or photons in a crystal lattice. Interactions
between electrons or the lattice and an X-ray will conserve momentum generally,
regardless of where in the lattice the interaction takes place. So in this case it is
best to describe things in terms of velocities (or momentum p). Indeed, a physi-
cist would prefer to use momentum p and kinetic energy E, because this makes
some of the physical equations more tractable.

Importantly, using momentum descriptors facilitates the transition from a par-
ticle picture to a wave picture of matter. How is this? The equivalence of the
momentum and wavelength of a quantum particle link the two pictures. The
quantum mechanical wave quantity that is related to the momentum of a particle
is the wavenumber k, (p =ℏ⋅k). Its magnitude is the reciprocal of the wavelength
of the wave: k = 2𝜋/𝜆. The wave quantity related to energy is the frequency, 𝜔
(E = ℏ𝜔). ℏ is the reduced Planck constant, (ℏ = h/2𝜋), and 𝜔 is expressed in
oscillations per unit time or dimensions of a reciprocal time.

Thus, for a particle moving through a lattice, the wavelength the particle is
allowed to have has some definite relationship to the distances between lattice
sites. The Bravais lattice is a lattice of these distances. So, let’s match up the
wavelengths of moving objects exactly to the distance values in the B lattice.
Remember, its momentum corresponds to a specific wavelength, so this gives
momentum values that correspond to the natural distances in the lattice, shown
schematically in Figure 4.1. The short wavelengths correspond to high energy par-
ticles and thus long momentum vectors, whereas the short momentum vectors
correspond to the longest wavelengths. Of course, this is a one-dimensional (1D)
lattice, but the three-dimensional analogue is easy to imagine.

This argument is a little overly simplified. But it appears that it is quite natural
to use a language of describing particle motion in the lattice using terms of nat-
ural wavelengths of the structure. A more compact argument might be to simply
say that the reciprocal lattice is the Fourier transform of the Bravais lattice. This
reciprocal space language allows some solid-state phenomena to be described
more simply. The price for this simplification is to get used to reciprocal space.

4.1.1 Constructing the Reciprocal Lattice

As you might have guessed from the above, there is a simple algebraic procedure
used to derive the reciprocal lattice from the crystal’s Bravais lattice. The crystal
lattice is usually defined by some elementary cell, such as the Wigner–Seitz cell.
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Reciprocal lattice (not to scale)
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Figure 4.1 This is a diagrammatic way of understanding how the reciprocal lattice is related to
the momentum. You might naturally ask: what about shorter wavelengths that match the
same lattice points as the longer wavelengths only with more oscillations? For example, 𝜆5 will
also terminate exactly on the 𝜆10 lattice point. This represents the same reciprocal lattice point
as 𝜆5.

This, in turn, is laid out by the three unit vectors (a, b, c) that span the elementary
cell. The reciprocal lattice is likewise defined by three unit vectors, and they are
usually labeled as some derivative of the original lattice vectors such as a*, b*,
and c*. In this way a and a* are linked together.

There is a formulaic way to get from one set of vectors to the other. For a general
lattice, the lengths of a*, b*, and c* are given by Eqs. (4.1a)–(4.1c):

a∗ = 2π(b × c)∕(a × b × c) (4.1a)
b∗ = 2π(a × c)∕(a × b × c) (4.1b)
c∗ = 2π(a × b)∕(a × b × c) (4.1c)

For a* this is 2𝜋 times the area between b and c divided by the volume of the
elementary cell. For a rectangular lattice, this is 2𝜋 bc/abc. The direction a* is
perpendicular to the plane defined by b and c. In a cubic lattice, its length is just 2𝜋
times the reciprocal of the lattice parameter a, hence the name reciprocal lattice.
Numerically, if for a given lattice a is 3 Å, the reciprocal lattice, the length of a* will
be 2𝜋 times one-third of a reciprocal angstrom. The factor 2𝜋 has been chosen to
simplify the equations. The factor 2𝜋 is often incorporated into other quantities.
Examples are the angular frequency𝜔= 2𝜋𝜈 for a wave, used instead of the linear
frequency v, or Planck’s constant existing in two versions h and ℏ = h/2𝜋.
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4.1.2 The Unit Cell

The reciprocal lattice is a lattice of points just like the Bravais lattice. So we can
treat it as such. In the Bravais lattice we used a procedure above to construct
the simplest primitive cell that we called the Wigner–Seitz cell. In the reciprocal
lattice there is also a unique choice for the primitive cell. Constructed using the
same techniques as for the Bravais lattice, this primitive cell in the reciprocal lat-
tice is called the Brillouin zone or first Brillouin zone. As with the primitive cell
in the Bravais lattice, the first Brillouin zone is repeated to reconstruct the entire
reciprocal lattice. This is seen in Figure 4.2. However, the meaning of the recipro-
cal lattice is different than the Bravais lattice; it represents a dynamic description
of the lattice. Thus, the physical dynamics of the first Brillouin zone is repeated
for the momentum values in higher zones. We will return to this point in some
examples below. For now, it is important only to remember that when trying to
understand the relationships between the E and k of specific phenomena within
the crystal, it is necessary to plot just the first Brillouin zone. It will contain all
the information you need.

Notice that the reciprocal lattice and the Brillouin zone of the simple
two-dimensional (2D) example given in Figure 4.2 appear rotated to the real
space lattice and its Wigner–Seitz cell. Of course the units of the distances and
the distances themselves are all quite different, but the symmetries all seem to
be there. In fact, if we had been clever, we might have reasoned that this should
be so; the reciprocal lattice should have the same point group symmetries as
the original real space lattice. Also of note is that this is an example in two
dimensions. Equations (4.1a)–(4.1c) are written for a three-dimensional lattice.
The equations used to get the 2D lattice are provided at the top of Figure 4.2,

Real vs. reciprocal lattices in 2D

Length Direction
a* = 2π/a a*

b*

b*

a*

b

a

b*

b

b

a

Wigner–seitz cell

Primitive cells of both lattices are shown

Brillouin zone

ab* = 2π/b

a*

Figure 4.2 Building the reciprocal lattice in two dimensions. In two dimensions the reciprocal
lattice appears to be a rotated Bravais lattice with different lattice parameters.
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Simple orthorhombic Bravais lattice
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Figure 4.3 (a) The lattice vectors of the simple orthorhombic lattice and its reciprocal lattice
and (b) the lattice vectors of the conventional body-centered cubic cell and its reciprocal
lattice.

but how did we arrive at them? Can you guess at this point what a 1D reciprocal
lattice would look like relative to its real space counterpart?

Now let’s examine the relationships between these definitions in three dimen-
sions using the above equations. Examples are given in Figures 4.3 and 4.4.

As you can see, the solid-state physicist or chemist must be adept at switching
back and forth between conventional descriptions of lattices, the Bravais lattice
and the reciprocal lattice. They must also be aware of the basic and most sim-
ple unit cells of these lattices, the Wigner–Seitz cell and the first Brillouin zone.
Crystallographers develop an almost encyclopedic knowledge of all of these crys-
tal descriptions and the symmetries that they represent. Indeed, there are whole
treatise and texts devoted to the subject.
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Using conventional lattice designations:

The Wigner–Seitz cell for the
lattice that makes a body-centered
cubic conventional structure

The first Brillouin zone or
the Wigner–Seitz cell of
the BCC′s reciprocal lattice

Figure 4.4 The Wigner–Seitz cells of the BCC lattice and its reciprocal lattice.

4.2 The Reciprocal Lattice and Scattering

In practice, the reciprocal lattice and reciprocal space are mainly used for graph-
ical representations. Crystallographers, for example, are interested in predict-
ing the position of X-ray reflections so that they may determine the structure
of unknown compounds. They will draw the reciprocal lattice or rather a par-
ticular plane of it, choose a certain scaling for it (e.g. centimeter) to represent
one reciprocal angstrom, and then proceed according to the description above
(a* perpendicular to the plane of b and c). They will then mark the wavevector of
the incoming and presumed outgoing X-ray beam (the direction to the detector).
The difference between these two vectors is the “momentum transfer” associated
with the scattering event.

Naturally, this is just how the use of the R lattice started historically. Recipro-
cal space has become the lingua franca of solid-state physics with nearly every
phenomena being expressed in its terms.

4.2.1 General Scattering

Any useful introduction and development of scattering techniques for the pur-
poses of structure determination could fill volumes. And the principles behind
different structural characterization techniques are diffractive in nature (scan-
ning probes excepted). For instance, the diffraction patterns of a Laue camera are
clearly X-rays diffracting from a crystal as discussed. However, low energy elec-
tron diffraction (LEED) patterns and reflection high energy electron diffraction
(RHEED) cameras used in semiconductor molecular beam epitaxy (MBE) growth
are electrons diffracting from the layers and yielding the atomic structure of crys-
tal surfaces and interfaces. High-resolution transmission electron microscopy
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Figure 4.5 The typical X-ray scattering experiment.

(HRTEM) is an electron diffraction-related imaging technique capable of “see-
ing” the lattice sites directly. Diffraction is central to our study of crystal structure
for any dimension. So, our purpose here must be to connect the concept of the
reciprocal lattice to specific diffraction conditions, regardless of the nature of the
characterization – though X-rays will be an often used example (Figure 4.5).

To start, think of a beam of X-rays, neutrons, or electrons, impingent on a sam-
ple with an incoming wavevector: k. On the other side of the crystal where we
expect the particles to emerge, they come out at a spectrum of specific angles
having a different wavevector: k′. They have been scattered. If we place some
sensitized film or a CCD camera there, we will see a series of regularly spaced
points. This is the basis of a Laue camera for X-rays. What determines the bright
and dark spots? Where are the X-rays and why are they not at the exit?

Allow that the incoming beam is fairly well collimated and that the X-rays or
electrons, or whatever, are to a large degree in phase with each other. That is,
the correlation length of the beam is nearly the diameter of the whole spot that
hits the surface. To get a hot spot (bright on the CCD, dark on the film) on the
other side means that the parts of the exiting “beam” or “beams” must have con-
structively interfered with each other. Consider two of these individual rays in
the beam separated by a distance of r. Let’s say some small differential volume
dV at r scattered one ray and the other was scattered at the origin, both heading
away at the angle𝜙. The incoming wave would have looked like ei k⋅r, a simple sine
wave with wavevector k. The outgoing wave would be similar with ei k′⋅r, a new
wavevector. If we assume that the magnitudes of these two wavevectors are the
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same, then the direction has changed. The two rays will still be in phase, but the
phase difference between them will have gotten larger by the extra distance one
ray had to travel over the other 2r sin𝜙 or in complex three-dimensional notation
ei (k−k′)⋅r. Now the intensity of scattering at our differential element for electrons,
X-rays, and other scatterers is simply proportional to the electron density at that
spot n(r). After all, if there are no electrons there, not much happens. To get the
intensity of the diffraction spots due to the whole crystal over all the incoming
rays, we must add them all up. First we get

F =
∫V

dVn(r) exp[i ̇(k − k′) ⋅ r] =
∫V

dVn(r) exp[−iΔk ⋅ r] (4.2)

F is called the scattering amplitude. This is simply the Bragg diffraction con-
dition spread over a continuous medium with diffracting planes showing up as
the modulation of n(r). The spot intensity, I, is proportional to the square of F .
Of course we recognize n(r) as being related directly to the crystal lattice, and it
can be expressed in terms of its Fourier components (that is, we can write it as a
reciprocal lattice):

n(r) =
∑

G
nG exp[i(G)] (4.3)

nG becomes the Fourier transform. This, of course, has expressed the same func-
tion only now in terms of its frequencies instead of its position vectors. Putting
Eq. (4.3) into Eq. (4.2), we can rewrite the scattering amplitude as

F =
∑

G
∫V

dV nG exp[i(G − Δk) ⋅ r] (4.4)

When G = Δk, F becomes VnG (V is volume) but otherwise it is vanishingly
small. This means that we only get “hot spots” at angles where

G = Δk (4.5)

or

𝟐k ⋅G + G2 = 0 (4.6)

Equations (4.5) and (4.6) are the conditions for constructive diffraction, some-
times called the von Laue diffraction conditions for Max von Laue. Of course, we
might say that they are quite intuitive. Each of these vectors k, k′, and G rep-
resents specific frequencies and “wavelengths.” Since we have assumed that no
absorption is occurring (k and k′ have the same magnitude), then the additional
path length must amount to a wavelength that fits wholly between diffracting
planes G. Naturally it looks a little more complicated since we have expressed it
in three-dimensional terms and using exponentials.

At this point we have the model. From here, everything is nuance of applica-
tion. For instance, (i) the n(r) was treated as though it were the reciprocal lattice,
but of course it is the whole of the electron distribution. What if there is a basis
set? How would you deal with that? (ii) Notice too that the scattering amplitude
as it is written describes something like the probability of scattering X-rays into a
specific solid angle, but what you actually see is an intensity of scattered radiation.
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As mentioned, intensities become the square of the scattering amplitude: I ∼ F2.
But this leaves us with a slight problem because the amplitude goes linearly with
volume of the crystal. That means the intensity will become the square of the vol-
ume of the crystal. This makes no sense; how much is scattered must obviously
be proportional to how much there is to scatter! How do we get around it? (iii)
Notice also that the amplitude works exactly the same for (hkl) planes pointed
in either forward or backward directions (assuming no absorption). This means
that the intensity of points for planes (hkl) and (hkl) is the same (also known as
Friedel’s rule). So all such diffraction patterns will have a natural inversion sym-
metry even if such a symmetry doesn’t exist in the crystal! (iv) Finally, we have
expressed scattering as interactions with n(r), but for neutrons the interactions
are with ion cores, not the electrons.

The point here is to express that the beautiful, delicate, and subtle science of
diffractive techniques goes quite deep. There are many theorems, lemmas, prin-
ciples, shortcuts, and insights that make up this art – far too many to cover here.
Generally, scientists that do electron microscopy become experts in the subtleties
of transmitted electron diffraction, crystallographers become experts in X-ray
techniques, MBE growers become adept at understanding RHEED cameras, and
so on – each with their own special set of rules (Figure 4.6).

An example of one of the more elegant constructs used in the field is the
so-called Ewald sphere, a sphere with radius equal to the incoming or outgoing
momentum vector. It is centered on the origin of the incoming k. If the Ewald
sphere touches one of the lattice points on the reciprocal lattice, it will show
as a peak in the X-ray intensity (“a reflection”) at the chosen detector position.

The ewald sphere construction

Where ever the
sphere touches
another R lattice
point gives the
condition Δk = G

The construct locates the
diffraction points in relation
to the incoming X-ray beam

Direction and axis
of incoming X-ray

It has wavevector k,
drawn to terminate
on a point of the R lattice

We draw a sphere
around this k-radius

k′

θ 2θ
k

G

Reciprocal lattice

b*

a*

Figure 4.6 The Ewald sphere.
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If not, the sample (and with it the reciprocal lattice) will have to be rotated until
a reciprocal lattice point will meet the sphere and the reflection condition is
fulfilled.

4.2.2 Real Systems

Of course in real three-dimensional crystals, many, if not most, will have some
sort of a basis. And, so, we might return just briefly to the nuance mentioned
above. How do we deal with this? What is the effect of a basis on the diffraction
spots?

WhenΔk=G, the diffraction conditions are met, and the scattering amplitude
expressed above becomes

FG = ∫cell
dVn(r) exp(−iG ⋅ r) = NSG (4.7)

Now we note here that we have played a fast and loose game with our inte-
grations because we are assuming a perfect crystal. The integral is now over a
single unit cell of the crystal, and the scattering amplitude has become a Fourier
transform of the electron density over that cell. N is the number of these cells. We
call this integral, SG, the structure factor. To evaluate it when a basis is present, we
describe the electron distribution as a superposition of the electron contributions
at each atomic site within the unit cell:

n(r) =
p∑

j=1
nj(r − rj) (4.8)

nj is the electron distribution of the jth atom in the cell and it is located at rj.
There are p such atoms in the cell. The choice of n(r) is not unique since we must
apply models to guess at the actual electron distribution, and that would require
we know the exact nature of electron sharing within the basis. But we can get
pretty close generally by knowing the bonding character. And so we write

SG =
∑

j
∫cell

dV nj(r− rj) exp(−iG ⋅ r)

=
∑

j
exp(−iG ⋅ rj)∫cell

dV nj(𝛒) exp(−iG ⋅ 𝛒) (4.9)

𝝆= r− rj. Now we take the integral part out. This integral is nonzero over only the
jth atomic site, so we can make the bounds of the integral over all space. We get

fj = ∫V
dV nj(𝛒) exp(−iG ⋅ 𝛒) (4.10)

This is the atomic form factor and it contains the bonding information we
guessed at above. Combining we get the structure factor for the atomic basis of
the crystal:

SG =
∑

j
fj exp(−iG ⋅ rj) (4.11)

And from this we get the scattering amplitude, FG.
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Fun Example Here Let’s look at a simple example that is covered in most standard
texts: that of the alkali metal sodium. It has a body-centered cubic (BCC) structure. As
we know the BCC is NOT a Bravais lattice; it is a lattice with a basis. We showed above
that the basis of the BCC lattice is pretty simple: using a Cartesian coordinate system,
we have identical atoms at

x1 = y1 = z1 = 0 (4.12a)
x2 = y2 = z2 = 1∕2 (4.12b)

The BCC
rj = xj x + yj y + zj z

x1 = y1 = z1 = 0

z

x2 = y2 = z2 = 1/2

x3 = y3 = 1, z3 = 0

y

x

This pair of atoms is placed into a cubic Bravais lattice. The two-atom basis sits on
each of the four corners of the original BCC cube, and the second atom of the basis
is what gives the “body-centered” appearance. Recall we mentioned earlier that we
would work with the Bravais lattice as opposed to the conventional lattice in calcu-
lating things like scattering. It happens that this will have some noticeable conse-
quences. To see this we must perform the sums above. To do this, we need to write
out the G’s and the r’s:

G = vxx∗ + vyy∗ + vzz∗ (4.13)

x*, y*, z* are the reciprocal lattice unit vectors associated with the x, y, z unit vectors
of the real space lattice. In other words we are defining our G vectors with reference
to the same coordinate system as the real space atomic positions:

rj = xjx + yjy + zjz (4.14)

From the basic definition given above, it is easy to show that

x∗ ⋅ x = 2𝜋 and x∗ ⋅ y = x∗ ⋅ z = 0 (4.15a)
y∗ ⋅ y = 2𝜋 and x ⋅ y∗ = y ⋅ z∗ = 0 (4.15b)
z∗ ⋅ z = 2𝜋 and y∗ ⋅ z = x ⋅ z∗ = 0 (4.15c)

So, we get

G ⋅ rj = 2𝜋(xjvx + yjvy + zjvx) (4.16)
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and

SG =
∑

j
fj2π(xjvx + yjvy + zjvx) (4.17)

Recall that this structure factor goes into the scattering amplitude, and the modulus
of that is the intensity of the specific diffraction spot associated with the (vx∗ , vy∗ , vz∗ )
planes that reflected it. That is, I∼ S*S.

This is interesting because if you will notice, not all selections of (vx∗ , vy∗ , vz∗ ) give
constructive interference. Specifically, in our BCC system, using the coordinates
above, we have

S(vx∗ , vy∗ , vz∗ ) = f {1 + exp[−iπ(vx∗ + vy∗ + vz∗ )]} (4.18)

Remember the f is the atomic form factor, and the sum above used for the two-atom
basis has the peculiar property of being zero whenever the argument of the exponent
is –i𝜋 (any odd integer). So,

S = 0 when (vx∗ + vy∗ + vz∗ ) is odd (4.19a)
S = 2f when (vx∗ + vy∗ + vz∗ ) is even (4.19b)

What this really means is that our X-ray diffraction example of sodium will not have
any diffraction spots from planes like (1,0,0), (3,0,0), (1,1,1), etc. But all the even sets
of planes will diffract: (2,0,0), (1,2,1), etc. So if we are careful in how we lay out our
diffraction film and geometry, we can tell immediately if we have a BCC system.

But what makes this example unique to sodium? Doesn’t this hold true for any
BCC structure? Yes, so far it does. But the information about the atoms sitting on
the lattice points is contained within the f . To see how, remember we must work
the integral

fj = ∫V
dV nj(r) exp(−iG ⋅ r) (4.20)

Let’s suppose we consider the case where G makes an angle 𝛼 with r, so the
exponential becomes −iGr cos 𝛼. The integral is worked over the individual
atomic site. For instance, if we consider the case of the electron density as
smooth and symmetric around the site, it will have only an r dependence as we
move away from the atomic core:

fj ≡ 2π
∫V

dr r2d(cos 𝛼)nj(r) exp(−iGr cos 𝛼) (4.21)

𝜙 part of volume integral.
Electron density in r.
This yields a relatively simple answer for spherically symmetric atoms in unit

cells:

fj = 2π
∫V

dr r2 nj(r) ⋅
eiGr − e−iGr

iGr
(4.22)

in the limit ∶ eiGr − e−iGr

iGr
∼ 2 (4.23)
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fj = 2𝜋
∫V

dr r2nj(r) = Z (4.24)

A curious result: such symmetries reduce to placing all the electrons of the atom
on each atomic position symmetrically.
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condos.

4.2.3 Applying This to Real One-Dimensional Systems

Above we asked: what does the reciprocal lattice of a 1D crystal look like? We of
course anticipate that the reciprocal lattice will also be a linear arrangement of
lattice points, the a* axis pointing in the same direction as the a axis and with the
length of the unit vector a* being 2𝜋 times the reciprocal of the length of a.

However the previous discussion described procedures used to design a recip-
rocal lattice in three dimensions: we absolutely need all unit vectors a, b, c to find
a unit vector of the reciprocal lattice. Yes, we have argued for reciprocal struc-
tures in lower dimension, but surely real systems have wavelike phenomena in all
three dimensions. With a little reflection, we might try an “anisotropy approach,”
as in the earlier chapters. To argue more cogently for the reciprocal lattice in one
dimension, we start with an anisotropic tetragonal lattice, having three axes at
right angles, but with two lattice parameters much larger than the third (b≫ a
and c≫ a), and then we increase b and c to infinity. The direction of a* is per-
pendicular to the plane defined by b and c. Since the crystal lattice is tetragonal
already, a is perpendicular to that plane also and hence a*||a, pointing in the same
direction. What is the length of a*? 2𝜋 times the area (b⋅c) divided by the volume
(a⋅b⋅c) gives 2𝜋/a (a finite value for any value of b and c even those approach-
ing infinity). What about the lengths of b* and c*? b* = 2𝜋(a⋅c)/(a⋅b⋅c) = 2𝜋/b
and similarly c* = 2𝜋/c. Both will approach zero as b and c take infinite values
(Figure 4.7). So the “infinitely anisotropic” 1D tetragonal lattice indeed consists
of a linear arrangement of points as reciprocal lattice.
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Figure 4.7 In tetragonal lattice, the limits b→∞ and c →∞ are the “infinite anisotropy”
approach to one dimensionality and illustrate that the reciprocal lattice of a linear chain is
again a linear chain.

But if you are working with things like polymers, things aren’t so easy. As
mentioned in Chapter 2, experiments are usually not carried out on isolated
chains, but on bundles: arrays of parallel chains. A three-dimensional crystal
is a bundle as well, but the term bundle is more general. It also covers arrays
of chains with random origin and random distances between the chains. In
other words, there is no order in the b and c directions. In this case we still
get a* = 2𝜋(b⋅c)/(a⋅b⋅c) = 2𝜋/a, but b* and c* are undefined. They are not zero
as in the case of the infinitely anisotropic lattice with b→∞ and c→∞. In a
disordered bundle b* and c* can take any value. Consequently, the reciprocal
lattice of such objects is not a linear arrangement of equidistant points, but an
arrangement of equidistant planes (Figure 4.8). This situation has a very practical
background. It actually describes the intensity (usually of X-rays or electrons)
observed from samples with high degrees of anisotropy such as polymers,
bundles of aligned fibers, etc. This is, of course, assuming that no damage is done
to the material by the scattering particle and that is quite easy to do in the case
of most isolated 1D materials.

Typically, as we have already pointed out, the X-rays are detected by a black-
ened spot on a photographic film or brightening of a scintillator screen. Thus,
the diffraction from this 1D atomic arrangement creates lines on the display, as
seen schematically in Figure 4.9: the diffraction pattern of KCP (see Chapter 2).
The Peierls distortion (coming a little later in the text in Chapter 9) leads to the
reorganization of the platinum atoms within the chains. At room temperature the
chains act independently of each other, and, as far as the Peierls distortion is con-
cerned, they form a disordered bundle. The X-ray evidence of a disordered bundle
is continuous streaks as shown on the Figure 4.9a of the diffraction diagram.
At low temperatures the chains interact, a coherent three-dimensional order is
established, and the streaks disintegrate into spots [2].
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X X X X X X X X

Figure 4.8 Reciprocal lattice of a disordered bundle (order in one dimension only) consisting
of equidistant planes. This will apply to noninteracting bundles of chains as well.

2kF 2kF spots

(a) (b)

Figure 4.9 X-ray diffraction pattern of KCP. The streak indicates disordered bundle behavior of
the Peierls distortion in the platinum chains. Source: From Comes et al. 1973 [[2]].

These representations are of an oriented single crystal of KCP using an appa-
ratus (a Laue camera) that aims X-rays into the crystal on one side and places a
photographic film (or today a scintillator and CCD) behind the sample. Alterna-
tively the film can be placed in front of the sample, and the X-rays go through
a hole in the center. In both cases the transmitted or reflected X-ray pattern is
distorted by the geometry of the flat film of the camera and the exiting spherical
waves of the scatterers, leading to the curved lines seen. Such a representation
is useful for the study of long-range order in single crystals and yields striking
signatures of dimensionality. The image is sometimes referred to as a Wulff net.
To interpret the pattern while taking into account the geometrical distortions,
one uses a special graph paper laid over top: Greninger charts for reflection and
Leonhardt charts for transmission.

4.3 A Summary of the Reciprocal Lattice

The tool commonly used to determine structural order and symmetry is diffrac-
tive scattering techniques. The language in which this tool is utilized is reciprocal
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space and reciprocal lattices. These describe the real space lattice in terms of the
natural frequencies of the lattice spacings. Essentially, this reciprocal lattice can
be thought of as the Fourier transform of the real space lattice. Due to diffraction
conditions the diffraction pattern is a projection of the Fourier transform onto a
screen or CCD.

In the real space lattice, the Wigner–Seitz cell is the most basic unit express-
ing the overall symmetry of the whole lattice. However in the reciprocal lattice,
it is the first Brillouin zone that does this job. In scattering experiments with
real crystal systems, physical attributes of the crystal such as the basis set or
microstructure can modify and modulate the bright and dark spots of the diffrac-
tion pattern. A simple set of models to understand these effects is based on point
scatterers and is quite effective.

Do not be fooled into thinking that if you don’t do X-ray scattering experi-
ments, you will never need to think about reciprocal space though. You see, things
within the lattice such as traveling waves on the lattice, or electrons moving from
one point to another, interact with the natural spacings of the lattice as easily as
objects that enter it from the outside. Reciprocal space, k-space, or momentum
space is the natural language to describe all dynamics within the solid state, so
from this chapter forward, it is to be “our friend.”

Exploring Concepts

1 Reciprocal Lattice of the Simple Cubic Structure: The primitive lattice vectors
of the simple cubic lattice are

a1 = ax̂; a2 = aŷ; a3 = aẑ

x̂, ŷ, ẑ are the unit vectors in Cartesian coordinates attached to the unit cell,
and a is the lattice parameter.
(a) Find an expression of the primitive reciprocal lattice unit vectors in

terms of the primitive real space lattice unit vectors.
(b) What is the volume of the primitive lattice unit cell and the reciprocal

lattice unit cell? What are the lattice constants?
(c) What are the boundaries of the first Brillouin zone in terms of the two

unit vector sets?

2 The Body-Centered Cubic: Using the primitive lattice vectors represented in
the Exploring Concepts of Chapter 3 for the BCC lattice:
(a) Find an expression of the primitive reciprocal lattice unit vectors in

terms of the primitive real space lattice unit vectors.
(b) What is the volume of the primitive lattice unit cell and the reciprocal

lattice unit cell? What are the lattice constants?
(c) What are the boundaries of the first Brillouin zone in terms of the two

unit vector sets?



Exploring Concepts 127

3 The Face-Centered Cubic: Again we return to Chapter 3 and the FCC lattice.
There you also found the FCC primitive lattice vectors. Now:
(a) Find an expression of the primitive reciprocal lattice unit vectors in

terms of the primitive real space lattice unit vectors.
(b) What is the volume of the primitive lattice unit cell and the reciprocal

lattice unit cell? What are the lattice constants?
(c) What are the boundaries of the first Brillouin zone in terms of the two

unit vector sets?

4 The Hexagonal Lattice: And finally in the HCP lattice:
(a) Find an expression of the primitive reciprocal lattice unit vectors in

terms of the primitive real space lattice unit vectors.
(b) What is the volume of the primitive lattice unit cell and the reciprocal

lattice unit cell? What are the lattice constants?
(c) What are the boundaries of the first Brillouin zone in terms of the two

unit vector sets?

5 Structure Factors: In the text, we have given an example of determining the
structure factor and the possible reflections from a BCC lattice. Following
this example:
(a) Repeat the analysis for the FCC lattice.
(b) Also show this same analysis for the HCP lattice.

6 2D Lattices: Construct the reciprocal lattice for graphene. Label directions
and lengths. Describe the expected X-ray diffraction pattern.

7 General Diffraction: Go get an X-ray source that is collimated and aim it at a
crystal of your choice. Make sure it is thin enough for the X-rays to get all the
way through, but not so thin as to allow for no interactions. You will need a
little trial and error here. Now place a piece of X-ray film on the other side
and record the pattern that shows up. Again, a little trial and error is needed
to get the right distance. Make sure to stay out of the way of the X-rays;
they aren’t so good for you! Once you have done this, take your sample; thin
it down using cleavage, dimpling, and an ion mill; and then mount it in an
electron microscope (say, 120 keV). Go into diffraction mode and record this
image. Now compare the two diffraction patterns. Finally, take a sample of
this crystal to a synchrotron – you may drive or fly as needed. Mount it in the
UHV specimen chamber – ensuring again to use the proper thickness – and
observe the diffraction that occurs on a scintillator. Please note that proper
cleaning and latex gloves are required for the UHV system – do not contam-
inate. Compare this diffraction with the other two methods. (This problem
is a little harder than others, and it is recommended that instructors allow
several days when assigning the problem.)
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8 Atomic Form Factor: Discuss the physical meaning of the atomic form factor
in more detail. What does it indicate in terms of the X-ray–atom interaction?
Why is the electron density important in the expression?

9 Rietveld Analysis: Go outside of the text for this one. Give a detailed overview
of the Rietveld refinement technique for determining crystal structure.

10 Neutron Diffraction: In many cases, neutron diffraction is preferred in struc-
tural studies over X-rays. These studies are carried out at nuclear reactors
wherein thermal neutrons are “collimated” and large three-axis spectrome-
ters are used to determine the diffraction pattern. Describe in detail the pri-
mary differences in these two diffraction techniques and when they are used.
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5

The Dynamic Lattice

From Chapter 4, we have in our minds a crystal as a set of atoms held rigidly
in space. But, if we carefully examine the diffraction patterns we have discussed,
we might notice that the diffraction peaks (spots of peak intensity) are attenu-
ated as the temperature of the crystal increases. From this simple observation,
we can reason that those atoms must move around! To see why is, we introduce
the Debye–Waller factor:

DWF = e−2W = ⟨exp(iG ⋅ ui)⟩2 (5.1)

G is a reciprocal lattice vector and uj is the displacement of the ith atom in a
Bravais lattice. The brackets stand for a thermal average.1 You may ask how does
this help us? Where does such a term fit into simple scattering experiments? Well,
remember the Structure Factor from Chapter 4? SG, has terms that look like:

SG ∼ fj exp(−iG ⋅ rj) (5.2)

f j is the form factor and rj the atomic positions in the unit cell. Technically,
this would be summed over the basis of the unit cell. G is the scattering vector
G = 2π/d (d is the plane spacing). But, if the jth atom isn’t precisely at rj, it is,
say, oscillating around this point instead. So really,

rj(t) = rj + u(t) (5.3)

rj(t) is the instantaneous position of the atom, rj is its mean position, and u(t)
is its instantaneous displacement from rj. The Structure Factor terms will then
become:

SG ∼ fj exp(−iG ⋅ rj) ⋅ ⟨exp(iG ⋅ ui)⟩ (5.4)

If we assume the displacements aren’t too large, then we could expand the last
term:

⟨exp(iG ⋅ u)⟩ = 1 − i⟨G ⋅u⟩ − 1∕2 ⟨(G ⋅ u)2⟩ +… (5.5)

1 For more general references of the above treatment we recommend: (a) Ashcroft, N.W. and
Mermin, N.D. (1976). Solid State Physics. New York: Sounders College Publishing; (b) Hellwege,
K.H. (1976). Einführung in die Festkörperphysik. Heidelberg: Springer Verlag; (c) Hunklinger, S.
(2007). Festkörperphysik. Munchen: Oldenbourg Wissenschaftsverlag. (d) Kittel, C. (1986).
Introduction to Solid State Physics, 6e. New York: John Wiley & Sons.

Thermal and time averages are used quite a bit in scattering expressions. You should review your
statistical mechanics or thermodynamics course notes to recall how to perform them generally.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Now let’s make a further assumption that the displacements are random and
uncorrelated. As we will see, this isn’t too good of an assumption, but it will do
for now. This means we must take ⟨G ⋅ u⟩ = 0. Dropping higher order terms and
simplifying the second term:

⟨(G ⋅ u)2⟩ = G2⟨u2⟩⟨cos2
𝜃⟩ = 1∕3 ⟨u2⟩G2 (5.6)

The one-third comes from the geometric average of the cos2
𝜃 term over a

sphere. This yields
exp(−1∕6 ⟨u2⟩G2) = 1 − 1∕6 ⟨u2⟩G2 +… (5.7)

If we allow for the motion of the atom to be nearly harmonic, then we get
Structure Factor terms with the form

SG ∼ fj exp(−iG ⋅ rj − 1∕6⟨u2⟩G2) (5.8)
and the intensity of the scattered radiation from the square of this becomes

I ∼ f 2
j exp(−iG ⋅ rj + iG ⋅ rj − 1∕3 ⟨u2⟩G2) = I0 exp(−1∕3 ⟨u2⟩G2) (5.9)

Here, I0 is the scattering intensity from a static lattice. So there is an X-ray
intensity drop-off. Part of this comes with the increasing angle of G and part
from the Debye–Waller factor. Of course, for the case of neutron diffraction, the
drop-off is entirely due to the Debye–Waller term, as you will understand by the
last section of the chapter.

Thus, it would seem that we must include “the motion of things” within our
picture of the lattice, even in regimes far from melting. But in this chapter we
must do more than this and introduce a powerful new idea for phenomena from
diffraction to specific heat, speed of sound, thermal and electrical conductivity,
thermoelectricity, and more. What is this idea? The atoms of the lattice move as
elastic, vibrational waves! In other words the atomic motion within the solid is
correlated. This fascinating concept must be reasoned through a circuitous route:
1. Introduce a classical model to explain the atomic correlation.
2. Examine the role of dimension in the dynamics expressions of the modes of

vibration.
3. Discuss the modifications of our classical picture that are introduced through

quantum mechanics.
4. Make the connection between classical elastic vibrational modes and phonon

quasiparticles.
5. Introduce the statistics of phonons.
6. Calculate thermodynamic entities on the basis of phonon models.

5.1 Crystal Vibrations and Phonons

The arrangement of atoms or molecules into a crystal is a result of forces that
keep the atoms in their positions. These forces are due to the chemical bonding
between atoms. Now, this is a quantum system so we really should talk about
potentials and wavefunctions, but first let’s look at the implications of a purely
classical model. And the most famous classical model is to represent each bond
as Hooke spring (Figure 5.1).
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Figure 5.1 The famous classical model of a one-dimensional crystal. The lattice forces due to
chemical bonding are represented by elastic springs. The problem then becomes a simple
undergraduate mechanics problem. Cyclic boundary conditions or fixed boundaries can be
used to establish normal modes of vibration.

It is famous because of how incredibly well the model works: when an atom
is deflected from its position of equilibrium and released, the imaginary spring
will pull the atom back. Due to its inertia, the atom will overshoot its equilibrium
position and the springs will push it toward the opposite direction. The process
repeats, and the atom oscillates. For small displacements, it turns out that this
mechanical model of springs, with a linear restoring force, captures much of what
we need to know about lattice oscillations.

The strain in consecutive springs causes adjacent atoms to oscillate as well.
The atomic oscillations around the lattice points correlate throughout the crystal
since they are all linked together through the springs. In fact, according to classi-
cal mechanics, a wave will develop. These waves are simply sound waves within
the solid.

We can’t ignore quantum mechanics forever though. So, the waves are physi-
cally allowed to take on only specific energies. Classically we might visualize this
as the normal modes of vibration of the chain above in one dimension, where
only specific amplitudes of oscillation and multiples thereof are allowed. As
we will show, these normal mode vibrations will become associated with discrete
packets of energy and momentum, which we can treat as particles. The Greek
word for sound is phonos and the quasiparticles corresponding to the sound
waves (following the quantum mechanical wave-particle dualism convention)
are called phonons. The human ear perceives sound up to some tens or hundreds
of kilohertz. The phonon frequencies, however, lie in the gigahertz range; thus
most of the phonons in solids are ultrasonic.

If we were visiting aliens to this world

with super-sensitive ultrasonic

hearing, it would seem as though the

materials around us would sing at a

specific set of frequencies. Of course

we would need to be relatively close to

hear it since they have very little

power. This is the conversion of local

heat energy into the vibrations of

material lattices and carried through

the air. As we visited planets closer

and closer to the sun (hotter and 

hotter), the pitch of these songs would

change.
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Remember that to characterize a wave, some basic quantities are necessary
such as the frequency v and the wavelength 𝜆. The amplitude is also needed, and
we will see later that it corresponds to the number of phonons of a given 𝜆. Recall
the frequency and wavelength are related by the phase velocity, vphase.

v = vphase∕𝜆 (5.10)

The wave phase velocity depends on the properties of the medium in which
the wave propagates. In our model above, for example, this is related to the force
constants of the springs (Figure 5.1). For small values of frequency and ampli-
tude, the force constants are the same for all values of frequency and amplitude;
otherwise we would not call them constants. However, this is not true for very
high frequencies. In that case, waves with different frequencies move with dif-
ferent velocities and a wave packet (a grouping of different frequencies to form a
localized pulse) will disperse. That is, it will spread out. Similarly, in optics a prism
disperses a polychromatic light beam because the refractive index of the prism
material (and hence the light velocity) depends on the light frequency. Because of
possible frequency/velocity dependence, Eq. (5.19) is called a dispersion relation.

For a complete description of a wave, the direction of the wave propagation is
also important. The direction of propagation and the reciprocal wavelength are
combined into the wavevector k, which points in the propagation direction and
has the length of the reciprocal wavelength multiplied by 2π:

|k| = 2π∕𝜆 (5.11)

Obviously the wavevector and the reciprocal lattice vectors are tied together.
You should ponder this for a few minutes. Using the wavevector for𝜆 and carrying
the 2π into 𝜈 to get 𝜔 (angular frequency in radians per second, which is more
convenient to use), then Eq. (5.3) takes on its classic appearance:

𝜔 = kvphase (5.12)

From quantum mechanics and wave–particle duality, we know that a wave with
frequency 𝜔 and wavevector k corresponds to a particle with energy E = ℏ𝜔 and
momentum p = ℏk.2 The energy travels as a wave but arrives as a particle. So
it is also reasonable to write the dispersion relation in terms of a quasiparticle’s
energy and its k or p dependence, E(k/p) vs. k/p:

E = ℏω

E = vphase p

p = ℏk

(5.13)

A free particle, for instance, has p=m𝝊, where m is the mass. The phase velocity
and group velocity of this particle’s quantum wave is equal to its classical velocity.
So we get

mv2 = p2∕2m (5.14)

However, in a crystal, phonons are not free particles. They are bound to the crys-
tal; literally they are a state of the crystal lattice. Therefore ℏk does not represent

2 Don’t forget. When we physicists want to divide a quantity by 2π, we draw a line through the
symbol. So h∕2π = ℏ.
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a momentum in the “free particle” sense. Instead it is a quasi-momentum or a
crystal momentum. A peculiarity of the crystal momentum is that its value can-
not exceed that of a reciprocal lattice vector of the crystal. If the momentum of
a quasiparticle is somehow pushed beyond that of ℏx (reciprocal lattice vector),
then the momentum value ℏG will be transferred to the crystal as a whole (G is a
reciprocal lattice vector as in Chapter 4). The recoil energy associated with that
momentum, and transferred to the crystal as a whole, does not show up in the
energy balance because of E = p2/2M. M is the total mass of the crystal, which is
almost infinite compared to the mass of an electron or atom (there are typically
1021 atoms in a crystal of 1 cm3 and an atom is about 104 times as heavy as an
electron).

Another way to think of this is that waves in the discrete lattice of a crystal dif-
fer from waves in a continuum. Because of the discreteness of the lattice, there
is a minimum wavelength. Waves with shorter wavelengths than the interatomic
distance are not possible, because there is nothing between two atoms that could
oscillate. Minimum wavelength means maximum wavevector and consequently
maximum momentum. A fancy way of expressing this is to say that the momen-
tum is “only defined modulo ℏG.”

The dispersion relation for phonons in the chain of Figure 5.1 can be calculated
using a classical Hooke’s law model. And, since our discussions have centered
on one-dimensional materials, it is reasonable to take a closer look at phonon
behavior in such materials: a monatomic lattice with linear restoring forces on
each spring.

5.1.1 A Simple One-Dimensional Model

5.1.1.1 A Model
We begin by placing each atom of mass M at an even spaced position along a
chain coupled together with springs. The lattice parameter is a. We index each
site by a counting integer s, so that the sth atom is at lattice position a times s.
From the static equilibrium state, we can consider two distinctly different types
of displacements: a longitudinal displacement – where the sth atom is displaced
along the axis of the chain by an amount us – and alternatively a perpendicular
displacement where the atoms can be displaced perpendicularly to the chain.
Both situations are shown in Figure 5.2 with the middle row being longitudinal
and the bottom perpendicular (transverse) displacements. We note that when
we go to solve for the normal modes of vibration in this classically mechanical
system, we will have to employ some type of boundary conditions that apply to
the atoms at the ends of the chain. We can pin them (no motion), allow them
to move independently, or connect the two ends of the line together so one end
follows the other. The last choice is known as the Born–von Karman boundary
conditions, which we will use. So you could think of this as being a loop of atoms.
The waves will propagate around the loop.

The fact that three different kinds of displacement are being considered is
important. Again, we have: (i) a longitudinal displacement, (ii) an up and down
displacement, and (iii) one not shown, into and out of the page. We might refer
to each of these as different polarizations of the vibration of the atomic chain.
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s–2 s–2 s s+1 s+2 s+3

us–2 us–1 us+1 us+2 us+3us

us–2 us–1 us+1 us+2 us+3us

Figure 5.2 The array of atoms indexed by s: (middle) longitudinal waves on the chain. (Lower)
transverse waves on the chain.

Notice that the restoring forces on each of the do not need to be the same, so
it is possible in a two- or three- dimensional system that each polarization has
a different vibrational character. Of course, in one dimension this may also be
possible, though for now, it isn’t necessary for our discussion.

In our development we take the approach of first considering purely elastic,
classical waves traveling through the solid. We then add quantum considerations
since, after all, we are considering atoms and they usually have quantum behav-
iors. Finally, we must add in quantum statistics. This approach will bring us to
one of the first great truths of solid-state physics: nearly every phenomenon in a
crystal (except for elastic diffraction) can be described as a box with the volume
of the crystal, filled with particles of some sort. These “particles” are not the
atoms, but rather the collective behavior, or vibrational modes, of the atoms and
their electrons.

Now, on to our solution. Here is the derivation from Hooke’s law:

F = M d2us∕dt2 = C1(us+1 − us) + C1(us−1 − us) (5.15)

We have used C1 to be an effective “spring constant” of the molecular spring
between atoms (the bonding orbital). Further, springs compress and expand
according to Hooke’s law in this picture. It is traditional to focus on the longitu-
dinal wave solutions at this point. Since we can decompose any general lattice
vibration down to a set of amplitudes of normal modes in a Fourier series, we
can simply focus on the normal mode solutions. These are given by

us = u0ei(kx−𝜔t) (5.16)

This harmonic solution has wavenumber k, an amplitude (plus phase factor) u0,
and frequency 𝜔. Since the x values on the chain are discrete, we can substitute x
with sa:

us = u0ei(ksa−𝜔t) (5.17)
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and we note
us+1 = u0ei(k(s+1)a−𝜔t) = useika (5.18a)
us−1 = u0ei(k(s−1)a−𝜔t) = use−ika (5.18b)

Substituting into the equation above,
Md2us∕dt2 = −M𝜔

2us (5.19)
−M𝜔

2 = C1(eika + e−ika − 2) (5.20)
−M𝜔

2 = C1(cos ka + i sin ka + cos ka − i sin ka − 2) (5.21)
−M𝜔

2 = −2C1(1 − cos ka) = −4C1sin2(ka∕2) (5.22)

This yields the dispersion relation for longitudinal waves within a monatomic
chain:

𝜔 = 2(C1∕M)1∕2|sin(ka∕2)| (5.23)

The dispersion relation is shown graphically in Figure 5.3, with the frequency
(energy can be used) as ordinate and the wavevector k as abscissa.3 The dispersion
relation is plotted up to the aforementioned maximum value for the wavevector k.
The graph does not have to end at that point, but from there on, no additional
information is obtained in extending it any further, because the energy does not
change if integer multiples of a reciprocal lattice vector are added to the wavevec-
tor (recall we mentioned that this would happen).

Figure 5.3 is obviously plotted in reciprocal space. The wavevector, k, has a
reciprocal length (the wavenumber) to which any reciprocal lattice vector can
be added. Reciprocal space is a convenient tool for discussing dispersion rela-
tions, but more than this, it is a generalization of the reciprocal lattice. We know
that the reciprocal lattice consists of discrete lattice points, connected by recip-
rocal lattice vectors with the origin of the reciprocal lattice. Here, the reciprocal

–π/a 0

ω

π/a k

(4C1/M)1/2

Figure 5.3 The dispersion relation for the model in Figure 5.2, a one-dimensional, monatomic
chain.

3 Here is a fine point. This is a one-dimensional problem and the wavevector k is laid out along the
direction of the reciprocal lattice – making it a k. This convention is adopted even in higher
dimensional problems as we will see.
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3rd 3rd
2nd BZ 2nd BZ

k

Dispersion

Lattice points

Extended zone representation

ω

1st BZ

Figure 5.4 Brillouin zones. The extended zone representation is not usually needed. A general
dispersion curve is shown.

space also includes the space between the points of the reciprocal lattice. For
most purposes only the space between the origin and the reciprocal lattice points
nearest to the origin is important: the first Brillouin zone (BZ) as introduced in
Chapter 4.

Recall the concept of Brillouin zones where Figure 5.4 shows the reciprocal lat-
tice of a linear chain. The arbitrary choice of origin of the reciprocal lattice lies in
the center of the figure. The interval between the origin and the first lattice points
on both sides is divided into halves; the region “first BZ” marks the first Brillouin
zone which is surrounded by the second Brillouin zone and so on. The concept
was generalized to two- and three-dimensional space in Chapter 4. For phonons
only the first Brillouin zone is relevant: the wavevector and the quasi-momentum
was only defined as modulo [ℏ𝜏].

5.1.1.2 Long Wavelength Vibrations
Returning to the dispersion relationship of Figure 5.3, for ka≪𝜆 or 𝜆≫ a, the
lattice vibrations are said to be in the long wavelength limit. These are the values
near zero in the BZ. Here,

sin ka∕2 ∼ ka∕2 (5.24)

and

𝜔 ∼ ka(C1∕M)1∕2 (5.25)

so 𝜔 is linear with k. For this case the phase velocity is given by

vp = 𝜔∕k = a(C1∕M)1∕2 = a constant (v0) (5.26)

The group velocity of a wave packet (the traditional speed of sound in a solid or
the velocity with which energy travels through the lattice) is given by

vg = d𝜔∕dk = a(C1∕M)1∕2 = vp (5.27)

So, vg = v0 in the long wavelength limit and they are constant with k.



5.1 Crystal Vibrations and Phonons 137

5.1.1.3 Short Wavelength Vibrations
For large k or small 𝜆, a little algebra shows

vp = v0(sin ka∕2)∕(ka∕2) (5.28)

whereas

vg = v0|cos ka∕2| (5.29)

So at k =+/− π/a, vg = 0! No wave is propagated at the BZ boundary. This is
simply the Bragg condition for reflection (adjacent atoms vibrate out of phase).
And at k near 0, the group velocity is at a maximum.

5.1.1.4 More Atoms in the Basis
The one-dimensional monatomic chain is a rather simple example. What happens
when the structure is made more complicated by a basis? Surprisingly, things do
not get that much more difficult. As we might expect, there is a set of in phase
motions of the subsets of atoms and a set of out of phase motions. Let us con-
sider briefly the case of a two-atom basis: M1 and M2. This is a little like the case
of graphene, but we are using this for one-dimensional, more like a conjugated
polymer. We assume M1 > M2. Our labeling system is as shown in Figure 5.5.

Again, our derivation from the basic model, Hooke’s law gives
M1d2us∕dt2 = C(vs + vs−1 − 2us) (5.30a)
M1d2vs∕dt2 = C(us+1 + us − 2vs) (5.30b)

The force constants have been assumed to be identical: C. We assume two har-
monic solutions:

us = uei(ksa−𝜔t) and vs = vei(ksa−𝜔t) (5.31)

Substituting,
− 𝜔2M1u = Cv(1 + e−ika) − 2Cu (5.32a)
− 𝜔2M2v = Cu(1 + eika) − 2Cv (5.32b)

s – 1 s s s + 1 s + 1 s + 2

Vs–1 Vsus us + 1 Us + 2

a

Vs + 1

Figure 5.5 An indexing scheme similar to the monatomic model is employed. One may
choose either atom for M1 and M2 (gray or blue balls).
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Manipulating this around we get two simultaneous equations:

(2C −M1𝜔
2)u − C(1 + e−ika)v = 0 (5.33)

− C(eika + 1)u + (2C −M2𝜔
2)v = 0 (5.34)

To have a single solution, the determinate of these equations must be zero. This
gives

M1M2𝜔
4 − 2C(M1 +M2)𝜔2 + 2C2(1 − cos ka) = 0 (5.35)

From the quadratic equation, we get

𝜔
2 =

C(M1 +M2)
M1M2

± C

{[M1 +M2

M1M2

]2

−
(

4
M1M2

)
sin2 ka

2

}1∕2

(5.36)

This is the dispersion relationship for the diatomic linear chain.
Notice that at k = 0:

𝜔 = 0 and𝜔 = [2C(M1 +M2)∕(M1M2 )]1∕2 (5.37)

At the BZ boundary k = ±π/a:

𝜔 = (2C∕M1)1∕2 and𝜔 = (2C∕M2)1∕2 (5.38)

The dispersion relation is plotted out in Figure 5.6.
The lower branch is referred to as the acoustic branch and with a little work you

can convince yourself that this is composed of coordinated, in phase motions of
the two sublattices made up of the basis atoms. The top branch is referred to as
the optical branch, and again with a little work it is easy to see that this must be
out of phase motion of the two sublattices made of the basis atoms.

So the two-atom basis adds another branch to the dispersion curve and a little
new physics shows up. However, this model is still rather simple in comparison
to some of our real, low-dimensional materials. Consider for instance the car-
bon nanotube. As we have already shown, there can be a tremendous number of

–π/a π/a k0

Acoustic

Gap

Optical

(2C/M2)1/2

(2C/M1)1/2

ω
Figure 5.6 Dispersion
relations of a diatomic chain.
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atoms in the basis set. But there is more than this. Surely the assumption that the
displacements and restoring forces are all aligned the same way is rather simplis-
tic. We must recall that the nanotube is “semi-one-dimensional.” That is, it is a
rolled up graphene sheet and there is a number of different ways to roll it. In this
case this means that the ways an atom might move along the tube is more com-
plicated than our model. There are longitudinal modes of course. Then there are
also transverse modes: breathing modes as they are called on nanotubes. But then
too there are the modes of motion that would have been associated with in-plane
vibrations of the graphene lattice before rolling and not necessarily along the axis.
These would lead to a vibrational twist of the nanotube – called twistons: these
are longitudinal modes overlaid onto the topology of a tube. So, the chirality of
the object can play an important role in determining the overall phonon disper-
sion curves, the number of branches, and what each branch stands for in terms
of atomic motion. Certainly not difficult to unravel, but beautifully complex for a
one-dimensional object!

What do we mean when we say in phase motion of the sublattices?

The two-atom basis has two-
sublattices: the lattice made up
of M1 atoms of the basis and the
lattice made up of the M2 atoms

The red and blue balls can
move together as the
wave travels by

Or the two masses
can move opposite
each other

One motion (the acoustic) is in phase with all atoms of a unit cell moving as one, the other
motion (the optical) is out of phase by 90° with atoms of the unit cell moving opposite
each other

M1

Red = sublattice 1

Blue = sublattice 2

Combined they are
the basis

M2

5.1.2 More Dimensions

Extending the above model to higher dimensions can get a little confusing. First
there is the “dimension” of polarization. The atoms along a one-dimensional chain
can move in three dimensions (forward/back, up/down, side/side). The first is a
longitudinal mode and the other two are transverse modes. Of course there is no a
priori reason for any of the force constants and restoring forces, to be the same or
resulting vibrations and dynamical modes to be degenerate. Naturally they might
be, but one can easily think of examples where they would not be. Thus, polar-
ization adds an additional little dimension, meaning nonspatial, to our problem.



140 5 The Dynamic Lattice

Like the case of electronic spin, a full description of the phonon must carry along
with it the value of this polarization dimension as well. Remember, spatially, the
phonon is still one-dimensional in this example as it still moves as a wave, with
velocities only forward and backward along the chain. Each polarization adds its
own branch to the dispersion curve. If there is a basis, then they too participate
in the polarization “dimension.”

Obviously, the other dimensional expansion we must consider is spatial. The
vibrational modes of a sheet of atoms or of a three-dimensionally array will
behave in a one-dimensional manner mainly, along the principle directions of
the reciprocal lattice. Now instead of one atom oscillating back and forth, it is a
line or a plane of atoms in the array. Let’s look to an “old friend” as an example:
graphene.

To get some expectation of how vibrations should behave on this trigonal,
two-atom basis, carbon lattice, we must first lay down some coordinates and
draw out the directions relative to the atoms. In Figure 5.7 we have done just
this. The lattice itself is made up of two equivalent sublattices shown in blue and
red. This represents the basis set on each primitive lattice point. The unit vectors

Graphene

W–S cell

y

ky

kx

x

First BZ

b1

b2

a1

a2

Figure 5.7 The graphene sheet laid out with its primary coordinate systems: real lattice (top)
and reciprocal lattice (bottom).
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of that primitive lattice are shown as a1 and a2 on the top part of the drawing.
The Wigner–Seitz (W–S) primitive cell is drawn in grey as a parallelogram and
we have oriented it relative to xy coordinates (red). From this primitive cell and
the lattice vectors, we can construct the reciprocal lattice vectors b1 and b2 as
shown at the bottom of the drawing. This follows the recipe in Chapter 4. Again
a parallelogram is formed for the first Brillouin zone (not to scale, so that it can
be seen), it is rotated relative to the W–S cell, and we have laid out the kxky
coordinates parallel to the xy coordinates. Notice that the unit wavevectors lay
in the direction of the perpendicular to the dotted green lines, which denote
lines of equivalent atoms throughout the real lattice. Thus, the lattice oscillations
are described by the primary modes of these lines of atoms oscillating as though
they were rigid along the line (the whole line displaces back/forth, up/down,
left/right). Notice too that there are two distinct directions of propagation,
along b1 and along b2. So, let’s say we would like to consider the possibility of
a line distorting with a wavelike solution. But this can now be described as a
superposition of waves in the b1 and b2 directions without loss of generality.
Thus we may consider a phonon traveling in any direction upon this plane.

How do we describe dispersion in this two-dimensional (2D) world? We
would like to use the same type of dispersion graph we have introduced for one
dimension. Since our fundamental modes of oscillation are already set up to look
one-dimensional, this shouldn’t be hard. To do it we must zoom in to that first
BZ as in Figure 5.8.

Here in Figure 5.8, we have labeled special points within the reciprocal space:
K , M, and Γ. They represent points along the zone boundary and of course the
zone center. These happen to be high symmetry points for this structure, and
each structure that is encountered will be a bit different. Calculations similar to
the simultaneous equations we used above are utilized to derive the expected
dispersion curves along the directions marked by these symbols. Since the sym-
bols mark the points of symmetry associated directly with the real lattice, this
approach makes it easy for the experimenter to use scattering observations with
oriented crystals and determine the accuracy of the calculations. What happens
for graphene?

In Figure 5.9 we show the calculated phonon dispersion curves of this 2D sys-
tem. The dispersion is plotted along the path Γ to K to M and back to Γ with
no breaks. Notice that there are a number of our expectations that have been

Figure 5.8 A close image of the
graphene first BZ with common labeling.

Close-up of
the picture
above

Γ

ky

kx

b1

b2

K

M

K′
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Figure 5.9 The dispersion relations calculated for graphene.

included in the calculation. First of all, this is a two-atom basis system, so there is a
set of optical and acoustic modes. Polarization has been taken into account so, as
expected, there are longitudinal and transverse modes. Also the spring constants
of the atoms are quite different (no degeneracies). Thus we have transverse waves
in which the atom vibrates in plane and waves in which it vibrates out of plane.
These are marked using a standard notation: iTA means in-plane, longitudinal,
acoustic mode, and so on (Figure 5.10). There are, in fact, six different branches

Vibrations of the graphene sheet iTA – in-plane transverse wave

LA – longitudinal wave lie along y

oTA – out of plane transverse wave
z

y

x

Figure 5.10 The vibrations of a graphene sheet in terms of the directions of atomic motion.
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we must keep up with here, two for each degree of freedom of the atoms, and this
for a simple sheet of carbon!

Of course an important connection that can be made with these results is the
many excellent Raman scattering experiments (inelastic scattering of light in the
visible range) on graphene. Knowing such dispersion characteristics can allow
the experimenter to identify which type of phonon is doing the scattering. This
in turn can give information about the purity or crystallinity of a sample. We
introduce Raman in the problem set below.

5.2 Quantum Considerations with Phonons

This simple analysis so far has considered only classical, elastic waves. But, as we
have already suggested, the energy of these waves is quantized. In fact, the disper-
sion curves shown above are not continuous but discrete states. The lines should
really be dots, but they would be very close together. The quantized vibration is
called a phonon – the language we introduced earlier. The energy of a phonon,
with angular frequency 𝜔, is given by

E = (n + 1∕2)ℏ𝜔 (5.39)

where n is an integer and as with other quantum harmonic oscillators in nature
these waves have a zero point energy. Here we have used the term “mode” to
denote the 𝜔 vibrational state, and the n describes the overall amplitude of the
wave in terms of discrete steps. This means the mean squared amplitude of the
vibration is also quantized. From basic mechanics the volumetric kinetic energy
of the elastic wave is given by

KE = 1∕4 𝜌V𝜔2u2
0sin2

𝜔t (5.40)

where 𝜌 is the volumetric mass density (in one dimension, the linear mass den-
sity), V is the volume (or the length in 1D) and the time average of the sine term
is 1/2. And we now say this must occur in steps:

1∕8 𝜌V𝜔2u2
0 = 1∕2 (n + 1∕2)ℏ𝜔 (5.41)

u2
0 = 4(n + 1∕2)ℏ∕𝜌V𝜔 (5.42)

This means that the displacement of the atom itself is quantized when partic-
ipating in such lattice vibrations (the u0). Each n represents a different number
of phonons. Again, we emphasize that this n is an integer and so only specific
E’s and 𝜔’s will occur. This is not surprising since it represents the very mean-
ing of being quantized. An interesting question in this regard is to ask exactly
what physical mechanism imposes quantization on the atomic motion. After all
a free atom could certainly take on itself any kinetic energy it wished and we have
rather artificially stated, “Well atoms are quantum objects, so we guess they must
oscillate like a quantum harmonic oscillator.”
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5.2.1 Conservation of Crystal Momentum

Source

Detector

A simple scattering geometry

k

k ′′

Sample

θ

Finally, we restate the above: phonons do not carry physical momentum as we
typically think of it. The crystal momentum they carry is analogous but it isn’t
equivalent since there isn’t any net mass transport in a crystal vibration. However,
like a particle, phonons interact with each other and with electrons, with photons,
etc., by obeying the conservation rules of momentum. So, they act like they have
momentum when they interact with, for example, a neutron, and this neutron
interaction can transfer momentum to start a vibrational mode. But you have to
think of the momentum as being transferred to the crystal as a whole. The atoms
are not permanently moved from their sites. The amount of momentum that a
phonon “thinks” it has is p = ℏ k. Of course the one exception is the k = 0 mode:
this represents whole crystal translation. The difference is subtle, and many times
it is simpler to treat “momentum as momentum,” thereby applying conservation
laws broadly. Just keep in mind that the crystal “limits” its momentum transfer to
within its first Brillouin zone.

Let’s consider what this means to scattering generally. In elastic scattering – like
diffraction – there is no gain or loss of energy by the interacting particle. There is
a selection rule for the momentum vectors involved in this interaction:

k +G = k′ (5.43)
such that a maximum in the diffracted beam intensity is seen. k is the incoming
particle’s wavevector and k′ is the wavevector of the scattered particle. G is the
set of all reciprocal lattice vectors within the first BZ. In this process the whole
crystal will recoil with a momentum of – ℏG, but we usually ignore this since it
is small compared to most anything.

5.2.2 General Scattering

You might have noticed above that we have taken the easiest case for X-ray scat-
tering. After all, we have derived only the resulting patterns created by elastic
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events in which the magnitude of the momentum of the incoming and outgoing
waves are equal as well as the kinetic energy. However, we have now said that
momentum and energy can be exchanged with the crystal and that these pro-
cesses would be conservative. Surely then, with X-rays, or neutrons, or electrons,
scattering from the crystal could exchange momentum and energy with the crys-
tal (Figure 5.11).

Let’s examine this proposition by considering a more general description of
scattering. Remember that our previous idea was that X-rays, electrons, etc.,
are reflected off from planar mirrors located roughly by n(r) within the solid.
Of course that neglects the effects the electromagnetic radiation might actually
have on n(r) (for the case of X-rays, for example). Clearly the electronic cloud
around an atom, when presented with a time-varying electric and magnetic
field, will not just sit there! It seems reasonable to expect that the electrons
and consequently the atoms of the lattice will undergo polarization and some
small force will be applied as a result of the interaction with the E&M field. That
is, there should be a small, time-varying force associated with the interaction
(Figure 5.12).

k, E(k) (Going in)

k′ E(k′) (Heading out)

Axis

Δk

Q, E(Q)

Figure 5.11 WhenΔk = G and |k| = |k′|, this problem can be easy, but when there is an
excitation absorbed or created, it gets more difficult. Solve. But when an excitation is created
or absorbed (destroyed), it can be far more difficult.

z

y
E(x,t) e–

n′(r)

x

Figure 5.12 We are building a simple model for X-ray interactions in the scattering process.
Notice that the interaction here is quite specific, so it would be different for different particles
such as neutrons.
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That force, (qE), has a time dependence like E(k,r)∼E0 exp(−i(k⋅r−𝜔0t)),
choosing a simple plane wave as our input wave to be scattered. Thus, the atom
will displace, which will lead to wave formation. So we have an idea of how the
ui(t)’s from above might behave based on a driving force.

To see how this leads to bright and dark points on a screen outside of the sam-
ple, we have two paths: (i) use Fermi’s Golden Rule to compute photon transitions
from k to k′ or (ii) realize that I ∼ |E2| from classical E&M, which means of course
that the thing we we’re calling the scattering amplitude is bound to be propor-
tional to E: F ∼E. This is not too different from what we argued before; it keeps the
n(r) term as it should and we will have to sum or integrate over the unit cell. This
time though, we are not ignoring the time dependence of the electric field vector,
exp(i𝜔0t), like we did last time. (Of course you may have guessed that we did this
because we were talking about many such beams over many such interactions
and so the outcome in the scattering amplitude would have been a time average
over all the oscillatory waves hitting any one particular place on the screen. Thus
we ignored it.) Now we analyze each individual scatterer. Either way you will get
the scattering amplitude we got before, multiplied by a time-dependent term:

F =
∫V

n(r) exp[−i(Δk ⋅ r)]dr {exp[i𝜔0t]} (5.44)

As last time we introduce a time-dependent n(r) and consider point scatterers
of a simple basis:

n(r, t) ∼
∑

j
𝛿(r − rj(t)) (5.45)

rj(t) = rj0 + uj(t) ∶ rj0 is the static position of the atom (5.46)
uj(t) = u0 exp

[
±i(q ⋅ rj + 𝜔(q)t

]
(5.47)

and so we get

F ∼
∑

exp
[
−i(Δk ⋅ rj(t) + 𝜔0t

]
(5.48)

∼ (1 − iΔk ⋅ uj(t)) exp(±i𝜔t) for small oscillations (5.49)
So,

F ∼
∑

exp[−iΔk ⋅ rj0 − iΔk ⋅ uj − i𝜔0t] (5.50)

Putting this all together,

F ∼
∑

exp[−i(Δk ⋅ rj0 − i𝜔0t)]

×
∑

iΔk ⋅ u0 exp[−iΔk ⋅ rj0 ± iq ⋅ rj0 ∓ i𝜔(q)t − i𝜔0t] (5.51)

q is the wavevector of the phonons we introduced above and𝜔 their frequencies.
These are associated with normal modes of the lattice as we have already shown.
The first sum is simply the elastic scattering component. The second term is far
more interesting:

Finelastic ∼
∑

iΔk ⋅ u0 exp[−i(Δk + q) ⋅ rj0 − i(𝜔0 ± 𝜔(q))t)] (5.52)

The frequency measured at the detector will be
𝜔 = 𝜔0 ± 𝜔(q) (5.53)
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and the condition for constructive interference from the inelastic component of
the sum will be

Δk = G ± q (5.54)

In this analysis, the k and k′ are the wavevectors of the incoming and outgoing
scattered particles, G is the set of all reciprocal lattice vectors that are within the
first BZ, and q is the wavevector of propagation for the interacting phonon. The
scatterers can gain or lose momentum consistent with the momentum associated
with the reciprocal lattice vectors plus the momentum of the phonons (which is
discrete).

Moreover, in inelastic interactions generally, energy is gained or lost by the
interacting particle (which is also discrete). When a scattering particle is sent
into a crystal (an alpha particle, electron, neutron, proton, etc.), it can undergo a
change in energy given by

ℏ
2 k2∕2M = ℏ2 k′2∕2M ± ℏ𝜔 (5.55)

where the± indicates the absorption of energy from a phonon by the scatterer or
the creation of a phonon by the scatterer.

5.3 Phonons Yield Thermal Properties

The “thermodynamics” of material objects is really defined by how heat energy
is stored and transported by the solid. How much heat energy, Q, does it take
to raise the temperature of the object, how fast does one end heat when the
other is heated, when does the object melt, etc. Since lattice vibrations can “store”
and “transport” significant amounts of energy within a solid, then certainly these
vibrations should be implicated in the macroscopic thermodynamics observed
from materials.

To see the extent of this idea, we must first put together everything we have
learned about phonons (lattice vibrations) because these characteristics will limit
exactly how such vibrational modes are allowed to interact with heat energy. So
recall from above, we know…

1. Phonons are quantized, meaning they carry energy in discrete chunks. We can
picture this classically as discrete vibrational amplitudes at specific frequen-
cies allowed by the lattice. As more quanta of energy are added to a specific
vibrational mode, the larger amplitude of vibration gets. We say that we have
more phonons of this mode 𝜔.

2. Phonons carry no real momentum; they carry crystal momentum. But we still
refer to this momentum as though it were the same as a particle of mass mov-
ing at some velocity. It has the restriction of only taking on values within the
first Brillouin Zone.

3. Phonons interact with other particles by obeying conservation laws. We treat
phonons as though they are a particle (called a quasiparticle) born of the col-
lective nature of the dynamics of many things within the crystal. These phonon
particles obey the laws of being particles for the most part: they conserve
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momentum and energy when they interact, for instance. Moreover, like the
quantum mechanical particle in a box, these phonon quasiparticles have quan-
tum states they occupy, allowed by the lattice and generally orthogonal to
each other (available modes of vibration in the lattice). However, we have not
adequately described the filling of these quantum phonon states (which we
enumerated with a K in our derivations above); do we treat these quasiparti-
cles as fermions or bosons? That is, exactly how many phonons can we pack
into any state?4 We have said that as we add quanta of energy to a given mode,
the vibrational amplitude of that mode increases and that this is equivalent to
adding phonons. But is there a limit to how many phonons of a specific mode
(𝜔) are allowed? And how does nature choose to fill up these modes for some
finite amount of heat energy Q? This we have not yet explored.

4. Finally phonons are not localized in space. They extend over the whole crystal.
This too is in concordance with the idea of the particle in a box. The nature
of this quasiparticle, as should be expected, is to carry a wave and particle
characteristic with it at all times. It travels as a wave but arrives as a particle.

With this in mind, can we work out a general scheme for thermodynamic enti-
ties such as heat capacity? The answer is “sort of . . . .”

5.3.1 Internal Energy and Phonons

The total internal energy per unit volume of a crystal lattice is composed of several
components. The first we have already seen in previous chapters: the configu-
rational energy of the static lattice. This is the binding energy of the atoms in
their equilibrium positions and it pertains to melting. Added to this energy is the
energy associated with the displacement of atoms from equilibrium positions: the
phonons or vibrational modes. In the context of heat transport and heat capac-
ity, we are concerned with the second component of internal energy and so our
models will be constructed toward predictions of solids far from phase transitions
generally.5

4 It is very important to note here that our discussion is taking a strange philosophical path. We are
describing a solid volume (the crystal) to have quantum states into which phonons may be added or
subtracted. The creation of phonons in the crystal populates one or the other of these quantum
states. The annihilation of phonons removes the phonon from one of these states. The quantum
states exist independently from the quasiparticle phonons. Those phonons are excitations of a
crystal field. We might imagine this to be consistent with pictures of particle creation in aspects of
other field theories, say, positrons and electrons in cosmology.
This is certainly not the historical way of looking at the problem. The phonon population, and
indeed phonons themselves, were seen as quantum states of the crystal lattice generally. These
quantum states carried momentum and obeyed conservation laws, so they had particle-like features
but should be counted as vibrational modes of the lattice and not pictured literally as particles. Of
course the mathematics is the same between the two pictures and the interpretations largely mean
the same thing. So in essence it makes little difference. We do point out that Einstein preferred the
second way of picturing things, and while it is a bit tasteless to argue with Einstein, we prefer the
first.
5 A more general treatment is necessary for solids approaching phase transitions and this will
necessitate the use of the correlation functions introduced earlier.
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This phonon internal energy, let’s call it Eph, can provide us the link to
thermodynamic elements associated with lattice vibrations, and as we have
already argued, in the temperature ranges we are discussing, this energy should
dominate behavior. Let’s assume that our volume of solid has some countable
number of oscillation modes; we might say some number of phonons. Each
vibrational mode or phonon has a frequency of oscillation given by 𝜔K ,p. We
further assume that our solid is in thermodynamic equilibrium. This means the
whole solid sits at the same temperature and no net heat energy Q is entering or
leaving. The total energy of the set of oscillators (or oscillations of the lattice, or
phonons) is then given by

Eph =
∑

K

∑

p
EK ,p =

∑

K

∑

p

[
⟨nK ,p⟩ +

1
2

]
ℏ𝜔K ,p (5.56)

The K is the wavevector index and p is the polarization (there are three of these).
Yep, we just add them together. We have also accounted for the fact that there are
different polarizations possible and that these may have different modal frequen-
cies. The 1/2 is a zero point energy. The really important term here is the: ⟨nK ,p⟩,
which is the thermal equilibrium occupancy of the state with wavevector K and
polarization p. The brackets mean a thermal average is to be taken. In thermal
equilibrium we equate this to a time average. So we recognize that phonons might
jump from state to state – though we haven’t identified a transition mechanism
yet, but what we are asking for is the average occupancy (or number of phonons)
of a given state 𝜔K ,p over time.

Now notice that at this point, working completely blindly, we have made no
assumptions about the nature of ⟨nK ,p⟩. If we do not make assumptions about the
nature of this occupancy rule, then it is clear that the choices we might make to
add up to Eph are not unique. However, thermal experiments can be performed
with a sense of reproducibility, regardless of the thermal history of sample prepa-
ration generally. Thus, we might take the bold step in assuming that the partition-
ing of energy among these states is not random and that this thermal average can
be replaced with a simple distribution function, f p(K ), that counts the number of
phonons in each K state, which has a corresponding 𝜔:

Eph =
∑

K

∑

p

[
fp(K) +

1
2

]
ℏ𝜔K ,p (5.57)

We notice here that the term 𝜔K ,p must come from some dispersion relation
as we have discussed above, in order to actually work this sum. Further, if we
accept that the Ks are relatively close together, this K sum is easier to work as an
integral:

Eph =
∑

p
∫

[
fp(K) +

1
2

]
ℏ𝜔K ,pdK (5.58)

We are working the integral over all the possible K values. From # 2 in our list
above, we are restricted then to working this over the first BZ. We still need a
guess for f p(k) and a dispersion curve.
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5.3.2 Models of Energy Distribution: f p(𝝎) and 𝝎K,p

To work the sum or integral above is to achieve an expression for the compo-
nent of the internal energy of the system due to physical vibrations of the atomic
nuclei. Clearly, given the vast number of circumstances that this might be applied
to, the usual approach is to offer approximations that work within specific bind-
ing regimes of the crystal and temperature ranges of experiment. It should be
specifically noted that generally such approaches are associated with equilibrium
situations: so there is no net heat flowing into or out of the system. The system
does not change its phase.

5.3.2.1 DuLong and Petit: Equipartition of Energy
Long before a comprehensive, spectral theory of phonons was developed, sci-
entists knew that many of the thermodynamic characteristics of solids (internal
energy, heat capacity, etc.) had nontrivial dependencies on temperature, T . To
address this, DuLong and Petit (D/P) developed a completely classical approach
based on an ensemble of atomic oscillators. The D/P approach assumed that
atomic vibrations were uncorrelated – just individual harmonic oscillators
placed at each of the lattice points. Further, energy was partitioned among the
oscillators as would be expected from the classical equipartition theorem. So this
means in our sum above we must replace the quantum energy of each mode with
its classical statistical mechanics counterpart.The first sum itself is now indexed
over the total number of oscillators, not the K states. The second sum is the num-
ber of degrees of freedom of the atomic oscillator. Here we have naïvely assumed
the oscillator to be an extended body in space, so we have been giving it trans-
lational and rotational degrees of freedom (following roughly from what D/P
did). So the result becomes exceedingly simple. Recall that the heat capacity is
defined as

Counts # of atomic
oscillators

[fp(K) + ½] ħωk,pEph
K p
∑∑=

1/2 kBT

6 (1/2 kBT )

Counts degrees of
freedom for each
oscillator

Eph = ∑
1

N

C = ΔQ∕ΔT (5.59)
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Figure 5.13 The Cv for several elemental solids are shown here. The dashed line is the
DuLong–Petit prediction. Notice that some metals do behave very much like the D/P model.
But our friend carbon doesn’t seem to follow the trend. (If it weren’t for carbon, this would all
be too easy!)

And through a little manipulation of thermodynamic variables, we can
reach the expression we will use to get our heat capacity for constant volume
(Figure 5.13):

Cv = (𝜕Etotal∕𝜕T)v (5.60)

D/P gives Eph = 3NkBT and the Cv = 3NkB, where N is the number of atoms
and this is the vibrational contribution. At high temperatures, this is a pretty
good approximation as Cv approaches a constant for many solids as tempera-
tures increase. However, for low temperatures we know from experiment (and
experiment is always right) Cv ∼ 𝛾T+ 𝛽T3 where the first term is due to elec-
tronic contributions and is small. So the D/P approximation is rather poor for
these conditions.

In fact D/P is pretty good for light metals that are weakly bound at higher
temperatures. Amorphous structures are also pretty well approached using this
approximation. Can you see why?

5.3.2.2 Einstein and Quantum Statistics
Clearly this classical model ignores important quantum effects that will be dom-
inant at very low temperatures. So Einstein set about to correct for this. Again,
beginning with our basic equation (counting integrals):

Eph =
∑

p
∫

[
fp(K) +

1
2

]
ℏ𝜔K ,pdK (5.61)

Or, if we choose to work with 𝜔 then the integral can be rewritten as

Eph =
∑

p
∫

[
fp(𝜔) +

1
2

]
Dp(𝜔)ℏ𝜔 d𝜔 (5.62)

D(𝜔) is the density of states at 𝜔 for each polarization p.
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Einstein’s picture also assumed an ensemble of N harmonic oscillators, all with
the same frequency, 𝜔E. These N oscillators had 3 degrees of freedom and were
located at lattice points as in D/P. Each harmonic atomic oscillator could increase
or decrease energy by ℏ𝜔E only – thus their oscillation amplitude changed. Now
Einstein had to figure out how the heat energy put into the system was distributed
among the N oscillators, kind of having N boxes that could be filled with quanta
of ℏ𝜔E and this had to total up to some given energy. So how does the energy
distribute itself among the boxes (or oscillators?)? Einstein assumed the energy
partitioned according to the Planck distribution with some small number of the
N oscillators having large amplitude vibrations and larger numbers of the N pop-
ulation having smaller vibrational amplitudes.

The Einstein picture itself is, of course, very different from what we have pre-
sented above with delocalized phonons, and much closer to that of D/P. However,
the picture can be made to comport with our own if we replace the idea of atomic
oscillator with phonon oscillator. All phonons have the same frequency𝜔E, in this
picture, and there are 3N of them that must be filled with different amplitudes.
This yields the following expressions for our counting integrals above:

fp(𝜔) = [exp(ℏ𝜔∕kBT) − 1]−1 (5.63)
D(𝜔) = N𝛿(𝜔 − 𝜔E) (5.64)

for any solid (a constant dispersion curve). It is straightforward to show that these
assumptions lead to the expression:

Cv = 3NkBx2ex∕(ex − 1)2 (5.65a)
x = ℏ𝜔E∕kBT = 𝜃E∕T (5.65b)

where 𝜃E is the Einstein temperature.
This expression is mathematically equivalent to what Einstein found and

approaches 0 functionally as e−x when the temperature approaches 0. This is in
accord with the third law of thermodynamics but misses the T3 rule we observe
from experiment. At high temperatures the expression reduces to the D/P result.

Einstein’s results give us the opportunity to explore one of the many nuances
of our counting integrals however. The dispersion curve we have discussed only
in terms of a single atom basis. In fact, if we considered a two-atom basis, then
there would be two branches of the dispersion curve that must be included in the
integral. This is in fact a little easier with the density of states integral than it is
with the K-space integral. However, the Einstein model makes a rather good low
temperature extrapolation for the optical modes of the two-atom basis dispersion
relation. It simply represents this branch as a straight, constant line with value𝜔E.

5.3.2.3 Debye and the Spectral Analysis
The Debye approach includes effects from the different phonon frequencies.
Unlike previous models, Debye treats an ensemble of correlated atomic motions,
or vibrational modes from the very beginning. Such modes are quantum
mechanical harmonic oscillators (phonons) vibrating at different frequencies
with their spectrum being described by dispersion relations. A mode with
frequency 𝜔 can have multiple phonons: n (number of phonons = the amplitude
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of vibration) and will have an energy of Eph(n) = (n+ 1/2) ℏ𝜔. But this is exactly
the scheme we have laid out at the beginning of the chapter – our modern view.
What the Debye approach does is to introduce some interpolation schemes or
approximations that make this model useful and predictive.

As with the Einstein model, we have to understand how a specific amount of
energy is partitioned among the available modal states. Again, we guess that the
Planck function will do this: f p(𝜔) = (exp[ℏ𝜔/kBT]−1)−1. However, this time our
“boxes” to be filled with quanta of energy (available phonon states) each accept
slightly different quanta sizes: ℏ𝜔. That is, the quantum of energy placed into K1
is different from the quantum of energy placed into K5. Notice here we presume
to index the K ’s as would be the case in the counting sums and integrals associ-
ated with Eq. (5.58). To be specific here, each phonon mode or state can have n
phonons occupying it, but it will be nK ,p phonons of ℏ𝜔 energy each (Figure 5.14).

This leaves us with the rather specific task of finding D(𝜔) for some general
problem (assuming we are working with this form of the counting integral as
opposed to the integral written in K ). Clearly if we have already some model
worked out, then we can easily determine D(𝜔). But what if we didn’t know pre-
cisely the 𝜔(K ) function and so D(𝜔) was not analytically at our fingertips? How
might we think about the problem of finding D(𝜔)? We can first ask what D(𝜔)
could possibly be in the most simple cases imaginable: the evenly spaced (square),
monatomic, low-dimensional, lattices.
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Figure 5.14 The “dispersion” gives a relationship between the E (or 𝜔) and the K state. From
this we can enumerate the 𝜔’s and determine the occupation of each energy state. Then it is
only a matter of coming up with some statistical function that describes the filling of these
energy states. The Planck distribution does this nicely.
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In One Dimension We consider a line of evenly spaced atoms (spacing a), each
with equal mass, as in our spring model above. For ease of counting let’s set our
boundary conditions to consider the case where our one-dimensional crystal has
N + 1 actual atoms in it and the end atoms are fixed so that they cannot move.
The crystal is a length L, which is long (so a =N/L), and we will index the atomic
placement with the counting integer s, as seen in Figure 5.2. Now each normal
mode of vibration of the string of atoms has a standing wave form that looks like

us = u(0) exp[−i𝜔K ,pt] sin sKa (5.66)

us is the displacement of the sth atom at position sa along the length of the
crystal. Yes, it is a vibrating standing wave like that of a violin, only there is
no mass between the atoms. Of course, K can take on only specific values:
K = π/L, 2π/L, 3π/L, 4π/L, … , (N − 1)π/L; otherwise the wave would not fit
nicely into the L length “box” with us ∼ 0 for s = 0 and s = N . Moreover, the
solution K = Nπ/L = π/a = Kmax and us ∼ sin(sπ) for this Kmax. For this state
each atom is motionless – they all sit at a node of the sine wave. In other words,
Kmax touches the edge of the first Brillouin Zone. This means there are precisely
(N − 1) independent K values that are allowed for this chain, no more or less.
This number is equal to the number of atoms that are allowed to move: add an
atom, you add a mode.

Now let’s look at a density of modal states. The total length of the line in K-space
(that is the length of its reciprocal lattice) is L* = (N − 1)π/L. As we have argued,
the total number of modes is (N − 1). So the total number of states per unit length
in K is n = L/π. This is of course for K ≤ π/a. Anything where K ≥ π/a gives n = 0,
there is a maximum allowed K ; Kmax as we have said. Also, don’t forget we have
3 polarizations. Thus, for this simple one-dimensional solid,

fp(𝜔) = [exp(ℏ𝜔∕kBT) − 1]−1 (5.67)
D(K) = L∕π (5.68)

However, our integrals require the number of modes per frequency range (as a
function of 𝜔 not K ). Notice that in the differential length d𝜔, you get the same
total number of modes as in the corresponding interval of dK . So,

D(𝜔)d𝜔 = D(K)dK = (L∕π)dK (5.69)

D(𝜔) =
(L
π

)
dK∕d𝜔 = L∕π[1∕(d𝜔∕dK)] = L∕π[1∕vg] (5.70)

d𝜔∕dK = group velocity of wave vg (5.71)

Eph = ∫

𝜔D

0
3{[exp(ℏ𝜔∕kBT) − 1]−1 + 1∕2}L∕π[d𝜔∕vg]ℏ𝜔 (5.72)

From this it seems that we have traded needing to know D(𝜔) for needing to
know d𝜔/dK , both leading back to knowing the dispersion relation. Notice also
that we integrate to Kmax, which has now become 𝜔D or the Debye cutoff fre-
quency. But we still cannot work this integral until we have a sense of vg and as it
happens this can be estimated using more classical notions of dispersion rather
easily. Of course we know exactly what it is from our analysis of this model above,
but we will come back to working the integral in the next section where we gen-
eralize the approximations to vg.
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A 2D Lattice The classical continuum mechanics analogue of the 2D lattice
considered here is the square drumhead.

This 2D atomic net has normal modes of vibration along the Kx and Ky direc-
tions. In each of these directions, there are three polarizations: two transverse
and one longitudinal. Since we seek what happens in the simplest circumstances,
we treat the restoring forces in each direction and for each polarization equally.
This is not realistic, but it does give some bounds on how to determine the D(𝜔).
It is important to note that we must impose boundary conditions on this net to
allow for the edges to connect together – the atoms of one edge follow the atoms
of the opposite edge. In this way we can ignore modes of vibrations that might
be associated with the edges of the crystal. In real crystals we cannot do this and
the edge modes play some role in behavior.

The area of the Brillouin Zone, as discussed in the previous chapter, is
ABZ = (2π/L)2 =(2π/Na)2 In the case of the 1D lattice above, it is relatively easy
to visualize why it is that the number of modes is equal to the number of atoms
allowed to move, that is, that there is one allowed value of K per reciprocal
cell. However, it is much harder to visualize why this would be the case for
the 2D example. Nevertheless, it is also true for the 2D system: one K state
per reciprocal cell in the net. This means simply that if we wanted to know
roughly how many states are encircled by the K marked in red for Figure 5.15,
we multiply the area of the K-circle and the areal of K-states per cell: one state
per (L/2π)2, to get a decent guess: πK2(L/2π)2 = N(k <K ), where k is a general k
inside the circle. This is for each polarization type.

So we can now get to an expression for density of states in 𝜔:
D(𝜔) = dN∕d𝜔 (5.73)
dN∕d𝜔 = (KL2∕2π)dK∕d𝜔 = KL2∕2πvg (5.74)

where K(𝜔) andtheareaof theatomic net havebeenused, L × L.
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Figure 5.15 The reciprocal lattice for the 2D square lattice.
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The Three-Dimensional Lattice This follows along the same example as 2D with few
surprises. The circle of Figure 5.15 becomes a sphere in 3D K-space and the radius
K is analogous. With this we also argue a single allowed K-state per reciprocal
cell, three polarizations for each of the three directions in K-space, and we assume
perfect symmetry between restoring forces since (again) we are seeking the most
simple understanding of the most simple system we can imagine. So what do
we get?

D(𝜔) = dN∕d𝜔 (5.75)
dN∕d𝜔 = (V K2∕2π2)dK∕d𝜔 = V K2∕2π2vg (5.76)

where K(𝜔) and V is the volume of the crystal.

5.3.3 The Debye Approximation

In our presentation we have drawn the probably artificial but useful distinction
between the Debye approach and what we are now going to call the Debye approx-
imation. Above is the Debye approach: how to count up modes and state fill-
ing using quantum statistics, dimension, symmetry, etc. Actually, our discussion
of phonons and oscillatory modes at the very beginning of the chapter is this
approach also and we now return to it. In other words, our whole intervening
presentation (Section 5.3.2) has been a historically circular review of how we got
to the more modern interpretations we now hold. However we are still left with
the need to know vg = d𝜔/dK as well as K (𝜔).

For this problem, Debye decided to assume a constant group velocity across
the K-states or modes: the Debye approximation.

𝜔 = vgK (5.77)

where vg is the constant.
This obviously makes things a bit easier: for instance, D3D(𝜔) = V𝜔2/2π2vg

3.
But is it a very reasonable approximation? Well, we have already seen from our
classical analysis of the modes of the one-dimensional system near the center of
the BZ, that is, dispersion goes linearly. This translates into saying at the lower
phonon energies: or when the population of phonons is small (from the Planck
distribution). In other words, we can say at low temperatures. But this is exactly
what we need. After all, the D/P and Einstein models (with our new interpreta-
tions overlaid) are not so bad at predicting thermodynamic behavior at the higher
temperatures. Importantly though, it is only a good approximation for the acous-
tic branch of the dispersion. So it would seem that for a diatomic basis, the Debye
approximation and Einstein approximation might work well together.

Now, let’s return to the Cv to see what the results of this approximation are. If
there are N atoms in our crystal and N reciprocal cells, then there are N modes in
the acoustic branch of our simple monoatomic lattice. Notice that this then gives
the largest wavevector K . The total number of wave modes with wavenumbers
less than K is given by following the above examples:

N = (L∕2π)3(4πK3∕3) (5.78)
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So,

K3
max = 6Nπ2∕V (5.79)

and using the Debye approximation,

𝜔
3
max = 6Nπ2v3∕V (5.80)

We usually give these cutoff wavevectors and frequencies the symbols asso-
ciated with the approximation used: KD and 𝜔D, as we introduced above. So
these will set the limits of the counting integrals to be used in Cv. Substituting
our Debye density of states and distribution functions into the counting integral
(Eq. (5.58)),

Eph = ∫
{[exp(ℏ𝜔∕kBT) − 1]−1 + 1∕2}V K2∕2π2vgℏ𝜔 d𝜔 (5.81)

Then substituting the Debye approximation,

Eph = ∫
{[exp(ℏ𝜔∕kBT) − 1]−1 + 1∕2}V𝜔2∕2π2v3

gℏ𝜔 d𝜔 (5.82)

We will for simplicity assume again the three polarizations are equivalent – so
we multiply the integral by 3 and we make a few notational changes that are com-
mon in the field:

x = ℏ𝜔∕kBT and xD = ℏ𝜔D∕kBT = 𝜃∕T (5.83)

𝜃 is the Debye temperature.
Our integral thus becomes

Eph =
3Vk4

BT4

2π2v3
gℏ

3 ∫

xD

0
dx x3∕(ex − 1) + terms with no T dependence (5.84)

The terms with no T dependence come from the zero point energy and we
ignore them here. Or more commonly,

Eph =
9NkBT
(T∕𝜃)3 ∫

xD

0
dx x3∕(ex − 1) (5.85)

from which we get,

Cv = dEph∕dT =
9NkBT
(T∕𝜃)3 ∫

xD

0
dx exx4∕(ex − 1)2 (5.86)

It might also be noted that for very low temperatures T ≪𝜃, the Eph can be
simplified significantly.

∫

∞

0
dx x3∕(ex − 1) =

∫

∞

0
dx x3

∞∑

s=1
e−sx = 6

∞∑

s=1
1∕s4 = π4∕15 (5.87)

wherein

Eph ∼ 3π4NkBT4∕5𝜃 (5.88)

yielding the T3 dependence in the Cv as observed. Plotted in Figure 5.16 is the
calculation for the Debye result.
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Figure 5.16 Using a standard graphical package like Mathematica®, the Debye
approximation can produce fairly acceptable approximations to Cv with only the knowledge
of 𝜃. Of course these values must be looked up from experimental work to get accuracy as we
have done here. First principles determinations are a little more difficult, considering we have
used so many simplifications in the equations presented.

So here we have presented three different approximations to understanding the
T dependencies in thermodynamic characteristics of a solid. We have focused on
the Cv and Eph calculations, but of course the picture of how phonons behave is
quite general. While this view was not necessarily held as these approximations
were historically introduced, we can see that there is utility in such approxima-
tions when we transpose the results to our more modern picture of vibrational
modes. What should be most obvious, however, from our discussion of Debye, is
that dimension plays a role even here. Notice that the temperature dependencies
will be different for one-dimensional and 2D solids than for the three dimensional
solid we ended with!

An Example in the Carbon Nanotube: The single-walled carbon nanotube is
actually a pretty complex structure as we have already discussed. It can have
a huge basis set and has geometrically associated normal modes that twist
about the axis. However, in a very real sense, it is simply a one-dimensional
object and at low temperatures we might be able to make a simple guess at the
behavior of its Cv using the Debye approximation. We gave above the density
of states of the one-dimensional system (simplified). With this we can follow
the exact same algebraic route of substitutions and simplifications as we did for
the three-dimensional system. We will leave this algebra to the reader for this
example (you should really do this), but what is obtained is

Cv(1D) ∼ 3.292[3Lk2
BT]∕πℏvg (5.89)

Yes, we would naively expect a linear dependence of the nanotube Cv as
T ≪𝜃. In fact, though there is some deviation, this is a pretty good approxi-
mation of what has been observed. However, it must be kept in mind that such
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Figure 5.17 Heat capacity
measurements show some
slight deviation from the
purely linear expectations of
our most simple Debye
approximation. However, it is
still astonishing close
considering how very complex
the nanotube actually is and
how hard the measurement is
to make. This graphic was
taken from Dresselhaus, M.S.
and Eklund, P.C.
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measurements on individual and isolated single-walled nanotubes are extremely
delicate. Figure 5.17 compares Cv of nanotubes with graphene and graphite.

But wait! Didn’t Figure 5.136 suggest something completely mysterious for car-
bon? Yes, it did. And now we can see why. We didn’t mention there what form
of carbon we were talking about. From this we can see that the phase of car-
bon will effect its 𝜃carbon and the dimension will effect its T dependence at lower
temperatures.

In fact, we aren’t quite done. The question of dimension can be placed on a
more formulaic footing. In fact, using just the tools above it is quite easy now to
show that [1]:

Cv(1D) ∼
[3DπD∕2 VkD+1

B TD ]
[(2π)D(D∕2)!ℏDvD

g ] ∫

∞

0
dx exxD+1∕[ex − 1]2 (5.90)

where D is the dimension of the system. Here we have treated all polarizations
equivalently again.

5.3.4 Generalizations of the Density of States

The density of states we have produced up until now has been of the most simple
type, counting each mode by the length, area, or volume taken up by a single
reciprocal lattice cell. In reality, there will be numerous branches of vibrational
modes to consider along with differences in polarization and directions in
K-space. So we really need a more robust understanding of how to do this
counting of states. We do this through a generalization of the methods we have
already made use of.

We need D(𝜔) generally, the number of states unit frequency range. We must
begin with our direct tie to the solid in question, the dispersion relation 𝜔(K ).

6 Source of graph: https://pawn.physik.uni-wuerzburg.de/video/thermodynamik/g/sg15.html.

https://pawn.physik.uni-wuerzburg.de/video/thermodynamik/g/sg15.html
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The number of allowed states between 𝜔 and 𝜔+ d𝜔 is given by the integral:

D(𝜔) =
( L

2π

)3

∫K−shell
d3K (5.91)

The integral is worked over the volume of a shell in K-space bounded on the
bottom by the surface of a sphere of constant energy: ℏ𝜔 and on the top by the
surface of ℏ(𝜔+ d𝜔).

If we define dK⟂ to be the perpendicular component of the K vector at the
differential element that connects the two surfaces, then d3K = dS

𝜔
dK⟂, a dif-

ferential volume of the shell at the surface element we have shown in Figure 5.18.
This is written in terms of K ’s and our counting integrals have been cast generally
in terms of 𝜔’s, so we need to transform these over. Notice that the vector ∇K𝜔

is also perpendicular to the constant surface of ℏ𝜔. So we can write

|∇K𝜔|dK⟂ = d𝜔 (5.92)

which is the differential change in𝜔 between the two surfaces connected by dK⟂.
The volume element then becomes

d3K = dS
𝜔

dK⟂ = dS
𝜔

d𝜔∕ ∣ ∇K 𝜔 ∣= dS
𝜔

d𝜔∕vg (5.93)

and we have a more general expression for the density of states:

D(𝜔)d𝜔 = V∕(2π)3
∫

dS
𝜔
∕vg (5.94)

Kz

Kz ħω

ħ(ω + dω)

Kx

Ky

The ellipsoid
represents a general
set of surfaces of
constant energy in 3D
K-space. These
bound the shell of K-
space states we seek
to count.

dSω

Figure 5.18 Consider a general set of surface in K-space each at a constant energy. The inner
surface sits at ℏ

𝜔
and the outer one at ℏ(𝜔+d𝜔). The differential element dS

𝜔
is attached to

the inner surface. The ellipsoids shown here are meant to represent the general situation
wherein different directions in K-space can result in different dispersions. Because the surfaces
are differentially close, we assume they are nearly concentric, but not quite. The task here is to
add up the number of allowed k-state that exist between the two surfaces. So, clearly, we must
have a detailed knowledge of the solid to do this.
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5.3.5 Other Thermal Properties: Thermal Transport

In our discussions we have used the models of phonons together with counting
methods to guess at the functional form of thermodynamic entities with temper-
ature. While we may have focused only on E and Cv above, the approach is surely
valid for other things we might want to know. Among these are, for example,
thermal transport properties. How does heat energy move along a material and
what role do phonons play? This provides a nice example of how to extend these
methods. Let’s see how.

Heat transfer or thermal conductivity in carbon nanotubes was originally
thought to be around 6000 W/m K or roughly that of diamond at 300 K. To see
if this is a reasonable number, we should be able to use our simple models to
derive something for low-dimensional materials. In classical heat transfer, the
kinetic theory of gases is used as a starting point, like a gas of phonons. Such
an approach leads to Fourier’s law where heat flux, Q, is defined as Q = kΔT .
The k is a thermal conductivity constant: k = Cvg

l∕3. C is the heat capacity, l is
the mean free path of the “gas” or the distance a particle goes without scattering,
and vg is the group velocity of the “particles.” This is what we are taught in
introductory physics.

However, this kinetic theory has a major drawback: it assumes that the system is
in local thermodynamic equilibrium. But heat is flowing through it, so how good
is such an assumption? For large crystals it isn’t too bad. But for smaller crystals,
like the nanotube, it can be disastrous. While it is OK to think in terms of our
phonons as a gas of particles moving through the structure, it is definitely NOT
OK to assume that the filling factors and distribution functions we have discussed
will be the same on each end of the structure. They can change differentially as we
move along the nanotube, for instance. Instead a more common way to address
this is the use of the Boltzmann transport equation.

𝜕f
𝜕t
+ v∇f +

F𝜕f
𝜕p

=
(
𝜕f
𝜕t

)

scattering
(5.95)

f is the statistical distribution function as introduced above, v is the velocity of
the particles, F is any driving force on the particles, p is the particles momentum
(notice we use p here instead of K to match with convention), and the last term
is the rate of change to the distribution function due to any collisions and scat-
tering in the system. The physical mechanisms of this last term will be discussed
more fully later, but for now think of it in terms of real particles interacting. In
this way we might assume that the net result of the scattering interactions to the
distribution of state filling is to restore or relax a distribution toward some form
of equilibrium. This assumption is known as linearization and it allows us to write

(
𝜕f
𝜕t

)

scattering
∼ (f0 − f )∕𝜏 (5.96)

𝜏 is a time scale for the relaxation of the distribution function from its f condition
to its f 0 equilibrium condition. We presume this is related to the mean free path
for interaction as l ∼ 1/𝜏 .
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This allows a solution for f (p; r,T), or at least an approximation. Thermal flux
then looks like

Q =
∫

vf𝜀D(𝜀)d𝜀 (5.97)

The integral uses the density of state function and integrates over all energies
(𝜔). So as is apparent, the problem reverts back to the same form as we have been
addressing above with some augmentation of how f is treated for nonequilibrium
purposes and an additional term in the integrand of the counting integral.

The subject of the thermal energy contained in lattice vibrations of condensed
matter systems is a rather broad one. In fact, it has become quite specialized and
represents a field unto itself at this point. But the foundations we have laid in
our phonon models above play the critical role in our modern understanding of
material thermodynamics and kinetics. Much of what we can predict about con-
densed matter systems involves knowing the state filling function and the density
of those states and then adding them all up across some index such as momentum
K or energy ℏ𝜔.

5.4 Anharmonic Effects

We have presented a harmonic lattice model. The atomic displacements and
vibrations are like a harmonic oscillator in classical mechanics. This clearly has
some consequences that we cannot live with observationally.7

1. There can be no thermal expansion of a solid in this model – but we know that
at high temperatures thermal expansion is observed.

2. In the above section, we mention phonon interaction (scattering), which we
do observe. But in a harmonic theory of phonons, the waves cannot interact.

3. Pressure and temperature dependences of the elastic constants will not occur.

To express such phenomena, lattice vibrations must include some anharmonic-
ity. By anharmonic, we mean higher order terms in the restoring force; so rather
than Frestoring ∼ x, we should really think: Frestoring ∼ kx+ k′x2 + k′′x3 +… where
the k’s get small quickly. Typically the k’s become more important as the displace-
ment gets larger. From our discussion of crystal binding in the previous chapters,
this really isn’t so surprising.

It is clear immediately that anharmonicity introduced into a crystal, even
without knowing its exact form, will have dramatic effects. Our first example is in
thermodynamic systems far from equilibrium. Such problems are like the thermal
transport discussed above, they characteristically present us with specific relax-
ation times associated with nonequilibrium forms of the distribution function
f . Stated simply, some stimulus prepares f in a nonequilibrium thermodynamic
state. The f can be thought of as a descriptor of that specific state. However,
because the phonons described by f can interact with each other, they do so,

7 We haven’t actually shown that these phenomena would be expected from a harmonic lattice, as
the chapter is already quite long. However these references can allow you to derive it yourself.



5.4 Anharmonic Effects 163

allowing for a relaxation of f toward a thermodynamically favored state of
equilibrium f 0. Thus, the strength of these anharmonic interactions has an
almost defining effect on nonequilibrium. But problems with systems at thermo-
dynamic equilibrium are also effected by the introduction of anharmonicity. The
nonlinearity of the restoring force will clearly lead to modifications in 𝜔(K ). This
is obvious from a purely classical perspective that the equations of motion have
changed.

So how is it that a medium described by nonlinear restoring forces leads to the
generation of waves that interact? What do we mean by interact in this context? A
simple way to “see” this might be the basic Duffing oscillator [2]. You might recall
from the basic mechanics of oscillators: the hard Duffing oscillator is a spring
that gets stiffer as its displacement from equilibrium becomes large. So at small
displacements it is nearly harmonic, but at large displacements the strain within
the spring gets large fast – as it would do presumably if it were an atomic bond.
The simple form (mass and k normalized to 1) of this oscillator is

d2u∕dt2 + u + u3 = 0 (5.98)
du∕dt = v̇ (5.99)
v̇ = −u − u3 (5.100)

These systems are conservative and so the orbits can be written down as an
energy integral:

1
2

v2 + 1
2

u2 + 1
4

u4 = E (5.101)

Each such E-orbit is a closed orbit, symmetric about the u and v axis. So the
maxima of u and v can be easily related through the energy expression:

E = 1
2

v2
m +

1
2

u2
m +

1
4

u4
m (5.102)

Thus, for large E, vm goes like (E)1/2, whereas um goes as (E)1/4 and the ellipse
becomes elongated along v as E increases. So generally, we expect the period of
oscillation, the time it takes to go around the orbit, to decrease as the amplitude
of oscillation increases. This means that the frequency of vibration increases with
higher amplitude. This is seen in Figure 5.19.

Now imagine that we have a medium that is governed by such a restoring force
and there is a single vibrational mode in this medium. This might correspond to a
single phonon quasiparticle. If a second phonon were to come by, and, under the
conditions of phase matching, they overlap each other, the amplitudes would add,
yielding a modified period of oscillation for that moment of overlap. We might
imagine, since these are moving phonons, that their kinetics might be modified
a little but ultimately they would slip past each other and go on their merry way.
This can happen, but what if the new frequency of the added waves happens to
be another eigenstate of the system? And what if that addition also happened to
have an amplitude number that was exactly the quantum of energy required for a
single phonon in that eigenstate? In other words, what if the new frequency and
amplitude matched up with some other point on the dispersion curve of the sys-
tem? Then one might have a new phonon with a different energy. Such processes
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Figure 5.19 The Duffing oscillator has a nonlinear term that yields an amplitude-dependent
period and frequency of oscillation. The strength of this term depends on any prefactors that
may be placed in front of it, but for our normalized system one can see that the fall-off in
period with amplitude is rather rapid (plotted with Mathematica®).

do happen – this is the form of interaction we are speaking of above – and this
particular form is known as harmonic generation of phonons because the fre-
quency of the final phonon is typically a harmonic of the two starting phonons.
However, the effect comes about purely due to anharmonic terms in the system’s
restoring forces.

We note here that this is a very simple model for generating mental pictures
and it has a few conditions that must be met. The first is a phase-matching
condition analogous to that seen in the harmonic generation of light in non-
linear optical media. The second is of course the conservation of energy and
momentum that would accompany quasiparticles traveling in a media. Naturally,
there are numerous beginning and ending states that can be imagined and
physicists typically use a set of diagrams to keep them all straight. The physics
is contained within the vertex of the diagram and is usually handled by some
rather complicated perturbation theory based on far deeper models than what
we have presented here. However, it is the ending states that help us understand
the results of the interactions and what we can expect in experiment. Because
we have conservation rules that appear on either side of the vertex, we can more
easily talk about the rates that specific interactions might occur under specific
circumstances. Shown in Figure 5.20 are a few of the many different ways that
phonons interact with each other, electrons, and photons. However, they can also
interact with other quasiparticles like plasmons, and they can couple particles
together such as in superconductivity where phonon exchange mediates electron
pairing. All of this from the simple idea that the lattice is anharmonic!

We did mention that there are some simple guidelines that help us with the
final states. To make use of these, we break our phonon interactions into two
types. Let’s focus on phonon–phonon (Table 5.1). We have Umklapp processes
and normal processes (U and N scattering).

Generally, normal scattering acts as though the phonon quasiparticles are real
and it conserves momentum as though the particles carry it away as any particle
would. However, the Umklapp process recognizes that the crystal momentum can
also play a role in momentum conservation. How does this work? Recall that for
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Figure 5.20 A diagrammatic way of viewing phonon interactions. Hidden in these elegant
descriptions are some rather beastly calculations. But the final states are governed by some
simple rules. Notice we have tried to stick with the convention on the use of symbols: springs
for phonons, wiggles for photons, etc. This is not always done. Straight lines are typically
particles, but a squiggly line can also mean a phonon in superfluids, so there can be
ambiguity. Hence, it is important to include the labels.

Table 5.1 Umklapp vs. normal interactions among phonons.

Umklapp (U) Normal (N)

K 1 + K 2 + G = K 3 K 1 + K 2 = K 3

E1 + E2 = E3 E1 + E2 = E3

Here we are considering only interactions of type (a) above
(Figure 5.20), but a similar table can be constructed for other
interactions. G is a reciprocal lattice vector. Notice that normal
scattering is a special case of Umklapp wherein G = 0.

any phonon with wavevector outside the first Brillouin Zone, it can be translated
back into the first BZ by the addition of a reciprocal lattice vector, G without loss
of information: the Nyquist frequency argument. For phonons scattering off of
other phonons, we must think of conservation laws and remember that phonons
are bosons and quasiparticles (they can be created and destroyed without much
fuss). In the normal scattering processes between phonons, crystal momentum
is conserved and all lattice vectors lie within the first BZ: G = 0. In Umklapp scat-
tering of phonons on phonons, G≠ 0 and some or all of the wavevectors of the
participants must be translated back into the first BZ by a reciprocal lattice vector.
Thus, the crystal momentum is not conserved. This is shown in Figure 5.21.
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Figure 5.21 The vector sums for normal and Umklapp scattering. (a) In normal scattering the
crystal momentum is conserved and the wavevectors of both incoming phonons add to make
a transition to the optical branch from the acoustic branch. (b) In Umklapp scattering the
resultant vector lies outside of the first BZ and must be translated back into this zone. Thus the
resultant vector can be surprising. Energy is conserved in both cases. Shown here are two
phonons going into one, but the reverse process is identical.

The first type of scattering (N) provides a relaxation route back to the Planck
distribution for the phonon population. However, it doesn’t provide for any
changes to the thermal conductivity of the system. So, what is the effect that
these Umklapp processes have on thermal conductivity? Imagine the following
scenario (Figure 5.22). We prepare a sample such that it is heated quickly at one
end of a thermally conductive bar. This prepares a nonequilibrium population of
phonons at one end that begin to propagate toward the other end. Perhaps this
is done with a laser pulse. Most all of the phonons are now moving in unison,
parallel to each other toward the opposite end of the bar sample.

Since there is no mechanism for wavevectors to reverse direction in normal
scattering, this means that only Umklapp scattering can provide truly diffused
scattering and therefore it gives rise to thermal resistance in the bar. We are show-
ing only the vx components in Figure 5.22. So if we assume that the Umklapp
processes dominate at room temperature and above and further that it is pro-
portional to the number of phonons in the system, then we can return to the
basic model presented above for an interacting gas of phonon particles and make
some guesses about the mean free path of scattering. Since the rate of scattering
follows the population, then l∼ 1/T since the number of phonons goes up with
increasing temperature.
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Figure 5.22 Two thermally conductive bars. Each with a distribution of phonons at the hot
end prepared to travel along the length. (a) In normal scattering there is no mechanism for the
phonon vectors to go any way except straight ahead. So while there may be a redistribution in
phonon velocity vectors, there is no net change in direction, meaning that there is no
significant resistance to phonon flow. All momentum is conserved. (b) In Umklapp scattering
the phonon wavevector can be turned around, providing a thermal resistance to the flow of
heat energy.

This, however, is not the end of the story with Umklapp processes. As it hap-
pens there are nuances and ambiguities we have glossed over. For instance, when
Umklapp processes are present, both normal and Umklapp scattering add to the
thermal resistance (consider how redistribution of the phonon energies might
effect the cross section for Umklapp processes). Moreover, we have discussed
Umklapp processes with the idea of a specific choice of Brillouin zone. However,
our choice of reciprocal unit cell, though traditional, is not unique nor binding
upon us; there are many such choices. In some choices a given process might be
Umklapp, whereas that same process might be normal in another choice. The bal-
ance of available scattering processes, however, will stay the same, leading to the
same statistical spread of outcome states. More about these subtleties and more
can be found in the references [3].

Finally, what about anharmonicity and low-dimensional structures? As we have
already done several times in this text, we return to our friend carbon. In fact, due
to the topology of the single-walled carbon nanotube, no acoustic only Umklapp
scattering can occur. Thus thermal resistance is derived from three phonon pro-
cesses only when acoustic–optical scattering is present. In comparison, graphene
strongly restricts scattering between out of plane (transverse) phonon modes and
so thermal transport is strongly contributed to by the acoustic branch out of plane
modes [4]. Thus, for low-dimensional structures, it seems that interactions with
the boundaries or topologies of the structure can lead to a restriction (or enhance-
ment) of specific Umklapp scattering events, thereby changing how heat energy
is transferred in the structure.
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5.5 Summary of Phonons

Our first comprehensive model of phonons is intended to provide some “men-
tal picture” of how energy is partitioned in the lattice of a solid. The picture
is based on the classical vibrational modes of a simple, harmonic, lattice. But
quantum must be used to discretize these vibrations, which we called phonons.
To understand energy partitioning in the solid, we counted the number of such
vibrations with specific energies by applying the statistics of bosons and the dis-
persion curve to get a density of phonon states unique to the solid. This approach
yields a reasonable guess of the internal energy of a system, which contains a large
contribution from the lattice vibrations, and the heat capacity.

Moreover, the dimension of a material can play a significant role in lattice
dynamics. The density of phonon states and symmetries of polarization depend
sensitively on whether we are dealing with a carbon nanotube or a sheet of
graphene, even though both are covalently bonded carbon. Indeed, we have
applied our model for such ideal systems of one and two dimensions. As pre-
sented, these ideas of elastic traveling waves can be extended three-dimensional
anisotropic materials systems, requiring tensor formulations. However, this is
really not necessary to understand the underlying meaning of the phonon.

Unfortunately, this model or picture isn’t quite enough. Experiments from sim-
ple thermal expansion to inelastic scattering suggest that the addition of anhar-
monic terms to the equations of motion is necessary to achieve interactions with
phonons. As we have stated previously, interactions and correlation are where the
real physics lies. Our physical “picture” becomes a bit more murky here, but the
results are clear: phonons are well suited to a quasiparticle model of interaction.
In experiments, we see the results of such interactions through the effects they
have on final state distributions.

Exploring Concepts

1 Intensity drop-off : At the beginning of the chapter, we make the astonishing
statement that the intensity of scattering drops-off with angle and with the
DWF. This is for X-rays of course, not for neutrons. Show that the drop-off
of intensity for the X-ray diffraction not associated with the DWF goes as
sin 𝜃/𝜆, where 𝜃 is the angle of the radiation detected and 𝜆 is its wavelength.

2 Motion of the two atom basis: In our analysis of the two-atom basis, linear
chain, we make note of the motion of atoms, M1 and M2 near the center
and the edges of the Brillouin Zone (that is, k = 0 and k = ±π/a). We make
the general hand-waving argument that these extreme values of k repre-
sent in phase and out of phase vibrations of the sublattices. Indeed you may
have already seen such arguments in a classical mechanics class. Using the
solutions presented and the equations of motion for u and v, see if you can
prove that in phase and out of phase motion occurs for the k values that
we say it does. You might find it easier to start with ratios of these position
coordinates.
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3 The conjugated system: Above, we solved the diatomic system by considering
the case where there were two masses: M1 and M2. But the interatomic forces
were the same: C. However in most conjugated polymer systems, the propo-
sition is precisely the opposite. There is, in fact, an alteration in the force
constants C1 and C2 that are associated with the double/single bond alter-
ation (Figure EC5.1).

(a) Following through with the analysis we used on M1 ≠M2, now work out
the details and then graph the dispersion curves for C1 ≠C2 but with
equal masses.

(b) Determine the bandgap at the BZ edge.
(c) Using the techniques we discussed, also analyze the motion of the atoms

at the special points of k = ±π/a and k = 0.
(d) Now imagine that you could grab the two ends of a long chain molecule,

holding it away from any supports, and apply a spectroscopic tool to mea-
sure the phonon dispersion as you slowly pull the molecule tighter and
tighter (like tightening a violin string). Describe what would happen to
the dispersion curve in detail according to your model. What does this
say about the speed of sound on your molecular string? Compare and
contrast this to a violin or guitar string.

4 Kohn anomaly: The Kohn anomaly was introduced earlier in the text, but
only qualitatively. Here we will consider an interesting model for this effect.
Consider the force constant to vary as Cp = A (sin pk0a)/pa. A and k0
are constants and the term describes the force constant between site s
and s+ p.
(a) Following our examples from before, see if you can plot out the disper-

sion curve for such a system (assuming equal masses in 1D).
(b) Notice that d𝜔/dk becomes interesting around k0. Find an analytical

expression for this and explain its meaning.

5 Light scattering: There are two types of visible light scattering used exten-
sively in one-dimensional (1D) materials to characterize phonon interac-
tions. In Raman scattering a laser is used to scatter light from the sample
and the scattered light is examined for peaks that represent the creation or
loss of energy from a phonon scattering event. So a spectrometer is used to

C

a/2 a/2

Figure EC5.1 A simple conjugated polymer model for phonon modes. Each carbon atom (C) is
spaced at a/2 for a unit cell of a.



170 5 The Dynamic Lattice

examine the photon energies off – but near – the primary light energy. In
the visible range of light,

2k0 =
4π
𝜆

∼ 2 × 10−3Å−1

This is about 1/1000 of a reciprocal lattice vector. Thus Raman scattering can
probe only the wavevectors near the center of the BZ. A “first-order” Raman
effect is the scattering of the photon, which creates or destroys a single
optical phonon of k = 0. A “second-order” Raman event is the creation or
destruction of a pair of phonons (with equal and opposite wavevectors near
the BZ center). Stokes shift Raman features represent the case of phonon
creation and are lower in energy than the primary beam. Anti-Stokes shift
features represent the situation in which a phonon has been destroyed and
are higher in energy than the primary beam. Since we are only examining
the optical wavevectors near the BZ center, Raman scattering is not sensitive
to angle. Brillouin scattering creates or destroys an acoustic phonon. The
large difference in the speed of sound and the speed of light means that
the energy shift for Brillouin scattering is extremely small. Moreover, such
scattering events are strongly dependent on k (see the dispersion curves
above). This means that the angle of scattering must be accounted for.
OK, now go to the literature for Raman spectroscopy of carbon nanotubes,
graphene, and BN.
(a) Examine the Raman signatures of single-walled carbon nanotubes. How

does one derive the chirality from this information?
(b) Compare the Raman signatures of sheets of graphene and BN . Explore

what implications this has for the atomic motions.

6 Cv for 1D: Using the dispersion curves derived for 1D systems, derive
the Cv. This is usually done in terms of the Debye temperature
𝜗D = [ℏ𝜈/k](6π2N/V )1/3 but you have to find the 1D equivalent. The
answer will look like Cv = F(T , 𝜗D) ∫ G(ℏ𝜔/kBT) d(ℏ𝜔/kBT).

7 Umklapp processes: Peierls showed that for computing thermal resistivity
and thermal conductivity in materials, collisions between phonons were
important. However, this process was not the expected from K 1 +K 2 = K 3
where the K ’s represent momentum vectors of phonons interacting; instead
it was K 1 +K 2 = K 3 +G where G is a reciprocal lattice vector. The idea
is actually pretty simple. For two phonons interacting (in a collision, for
example), K 1 +K 2 must be conserved to yield the resulting momentum
vector. However, the addition can result in a K 3 that lies outside the first
Brillouin zone. This should be translated back into the first BZ by means of
adding a reciprocal lattice vector (Figure EC5.2).
Show that the energy required for an Umklapp process to happen is of the
order 1/2 kB 𝜃D.

8 The square lattice in 2D: Finally, when we presented the graphene lattice, we
left out quite a few of the details. In this exercise, consider the monatomic
square lattice in 2D with lattice parameter a.
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Figure EC5.2 The k vectors of a normal vs. an Umklapp scattering event.

(a) Break down the equations of motion into x and y components and set up
the linear algebraic expressions to solve.

(b) Now solve and plot these equations in the form of a dispersion curve.
Use the X, Γ, M, … presentation that we have used in analogy with
graphene.

(c) Explain how this would change if the lattice were rectangular with a≠ b.
Reason and draw what the dispersion curve might look like.

9 Ultrasound: Ultrasonic techniques are used to “look” inside a material
and determine faults and voids. This involves placing a transducer on the
surface of the material and generating high frequency sound waves that
penetrate the material and reflect back to the transducer where they are
detected. Is the impulse with which the wave hits the transducer carrying a
real momentum or a crystal momentum? Explain your answer.

10 Melting in 2D: Imagine that you have a sheet of perfect, unsupported,
graphene. You cool it to millikelvin and allow xenon gas to condense on
its surface. Even though the xenon is only very weakly interacting with the
graphene through van der Waals forces, it is enough to allow for the forma-
tion of a 2D “xenon crystal.” Introduce a few phonons into the graphene,
and describe in detail what should happen to the xenon layer. Base your
argument on momentum transfer from the graphene layer to the 2D xenon
crystal and remember that the xenon atoms are not interacting with each
other very much at all. What would the xenon mass correlation function
look like qualitatively? Could this be described as a phase transition?
Why or why not? To approach this problem, you will have to decide on a
picture of how the xenon atoms are stabilized in their positions to begin
with.
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6

Electrons in Solids

The Story of the Traveling Electron

Sz

When collections of atoms are brought together adiabatically,1 they interact
through Coulombic forces, forming a complicated potential energy landscape
across the condensate. The electronic state of the solid, which includes the states
of all the electrons in the system (the solid’s electronic structure), is ultimately a
single eigensolution of the Schrödinger equation (SE).2 So solids are many-body

1 Many of the atomic configurations we discuss in solid-state physics are put together this way to
ensure thermodynamic stability and lowest energy configuration generally.
2 Technically, we note here that the Schrödinger equation is not consistent with special relativity.
While it is adequate for getting a good approximation to electronic structure and viewing the
electronic state of the solid as a sum of the individual particle states, it is the Dirac equation that is
consistent with Einstein. The Dirac equation also has spin and particle–antiparticle pairs as a
natural consequence. Moreover, the Dirac equation leads naturally to second quantization and field
theoretic approaches to fundamental particles. But the Dirac approach can be cumbersome. With it,

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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systems requiring many-body quantum mechanics to understand them. The
complexity is daunting whether we speak of a macromolecule, a nanoparticle, or
a large crystal.

We say electronic structure and not transport here. There is a subtle distinction.
Electronic transport is the motion of charge carriers from one place in the solid
to another due to some applied outside motivating force. We will get to that later.
Electronic structure refers to the equilibrium electronic energy states of charge
carriers in the solid. For our immediate purposes, these are treated as though
they are a bunch of individual electron states with no externally applied fields.
What?

The full enumeration of all the electronic states in a solid begins with writing
down the full Hamiltonian of the system. This includes all electrons (core and
valence) and their spins, all ions along with the harmonic and anharmonic
motions of the ions, etc. In other words, the full dynamical lattice with all of its
parts goes into the Hamiltonian that is then used to make up the SE or Dirac
equation if one wants to include relativistic effects. There are two problems
with this: (i) it is really hard to do, and we are likely to be unsuccessful, and
(ii) even if we were successful, the answers would be hard to understand and
visualize (obscured by mathematical complexity so that we can’t easily see the
macro-analogues in our heads).

Thus, we are left to solve the problem by factoring it into smaller problems first.
A priori we have no reason to suggest that this many-body problem can be sepa-
rated into components that might be addressed in isolation. But we have done this
already with phonons. The electrons there were treated as “classical springs,” and
the ions moved according to a classical analogue, independent of anything else
the electrons might be doing. Sure, we did address this “anything else” when we
determined that we needed anharmonic terms to match our observations. This
had to be artificially added into our problem because our approximations to the
subsystem were too simple. However, the factorability of the problem seems to be
acceptable. The reason this approach works is not altogether easy to understand,
but it also seems to work for electrons.

Evolving Pictures

Taking the perspective above, perhaps the sharing of electrons can be understood
as the freedom of some electrons to roam the volume of the solid. This is what we
might call a picture. Of course, all electrons are part of a global Hamiltonian.
That includes the ions, other electrons, and the collective interactions that they
all feel. But we are going to ignore this for a moment and see the mobile electrons
as a small set of more-or-less disinterested sojourners that move through the solid

it is quite difficult to see basic electronic behavior emerge from the atomic nature of the individual
components of the solid. So, for an introductory text, it is usually good practice to stick to the
Schrödinger equation and allow it to build our intuitions about the electronic structure in solids.
From this starting point more detailed discussions regarding relativistic effects can be had.
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Figure 6.1 Interactions between charge carriers, moving ionic cores, and collective
oscillations of polarization, spin, etc. set the stage for the physics of a solid-state system.

and interact weakly with the other things there. How free is the electron to roam?
What shall it encounter on its journey? Can we describe the electronic states
available to the “quasi-free” electron? These are the questions we must answer if
this picture is to be useful. Let’s begin with two expectations of this picture:

1. We might expect that only the outer shell electrons should be able to roam
freely. Inner shell and core electrons are likely to stay put because they are
tightly bound to the lattice site. The many-body wavefunction looks like
atomic orbitals for these near-core electrons. The outer shell electrons are
somehow screened from this strong Coulombic interaction with the core. But
we remain vague about this for now.

2. Other beasties live in the solid’s volume. They include phonons, other elec-
trons, “spin objects,” etc., and they will interact with free electrons. Such inter-
actions can give rise to complex electronic and transport properties. However,
to first order, we can think of such interactions as simple scattering events.
The electron ball of charge hits another electron ball of charge, or a phonon
quasiparticle, or a polariton, or whatever. This is a particle–particle scatter-
ing paradigm [1]. Such interactions are where the interesting physics is to be
found (Figure 6.1).

Philosophically, to “evolve” our simple picture above, we will need to artificially
add interactions one at a time. This makes the physics easier to picture in our
minds. We start simple: let’s say with the interaction between the electron and
the lattice when the lattice is doing absolutely nothing and in the limit where
local lattice potentials are weak. From there we “turn up” the strength of the local
atomic potentials, we “add in” electron–electron repulsion and allow the lattice to
have some dynamics of its own, etc. We will call this the adiabatic approach, and
it really consists of a series of refinements to the “individual roaming electrons”
picture of the solid. It derives from a basic tendency of physicists to be reduction-
ist in the way they see the universe, though reductionism doesn’t always serve us
well in solid-state systems.



176 6 Electrons in Solids

Superconductors

An important example of adding interactions into a picture of a solid is that of
lattice vibrations and mobile electrons in BCS superconductivity (BCS is a spe-
cific type of superconductivity). Typically, in a solid, the solid-state energy states
of electrons are dominated by two well-known principles: the Coulomb force and
the Pauli exclusion principle. Oddly enough, however, electrons can pair up using
lattice distortions caused by the electrons themselves (an interaction). This, in
turn, can lead to correlation of behavior between pairs of electrons in the lattice.
These pairs are called Cooper pairs, and they are allowed to ignore both Coulomb
and Pauli! This is because the {electrons+ phonon} is its own quasiparticle with
its own density of states (DOS) and its own statistics (bosonic). What is more
interesting is that the phonons associated with this pairing are typically no longer
subject to Umklapp-type processes, and so the electrons are “herded” through
the lattice with no electrical resistance at all: superconducting. A complicated and
spectacular phenomenon, superconductivity, arises from a relatively simple inter-
action. And its explanation can be had in terms of artificially adding interaction
terms to our picture that was originally borne of separability. Of course! This is
not a fully tautological approach to BCS superconductivity, but it does demon-
strate the usefulness of pictures in gaining physical intuition about the solid state.

6.1 Properties of Electrons: A Review

Since our approach will treat the electrons in a solid as individual and isolated
quantum systems by themselves, it is important to remember or review a few
properties of electrons that we know from quantum mechanics.

6.1.1 Electrons Travel as Waves

We normally think of electrons as particles, but according to de Broglie they also
have a “wave nature.” This wave nature of the electron is particularly important
when it is in a crystal lattice since that will define specific, repeating interaction
lengths. We also think of phonons as waves, and they too have a (quasi) particle
nature, as we have seen. We call the principle wave–particle duality, but in a solid
it has a nuance. The phonon particle seems to “share” momentum with reciprocal
lattice vectors. After all, it is made up of lattice atoms moving about. But what
about the electron in the lattice? Does it have a “pure” momentum or one that
can be translated by a R lattice vector? It is actually more like the phonon than
you might think.

6.1.1.1 Delocalization
In the crystal some free electrons are strongly associated with an atomic site.
They are said to be localized. Some do not belong to any particular atom in the
crystal. These are said to be delocalized. The number of localized and delocalized



6.1 Properties of Electrons: A Review 177

electrons depends on the specifics of the material, but in the delocalized case,
the electron wavefunction is more like that of a free particle in space, spreading
out over the crystal. The delocalized electrons can originate (i) from within the
crystal and are associated with valence electrons of some forgotten atom, or (ii)
they can be injected from the outside world such as in an electronic device.

The conduction electrons of metals or of doped or photoexcited semiconductors
are a set of freely roaming electrons. When they are relatively delocalized, they
have wavefunctions that can be described most closely as the following:

1. Plane waves: In a simple metal near room temperature, one assumes a prepon-
derance of free and mobile electrons. After all, really good metals can respond
almost perfectly to an applied electric field. So we might imagine many, many
electrons that can move readily. But even in a really good metal, there is some
resistance to electron flow and a skin depth of incident radiation. The origins
of these phenomena in a metal are well explained by treating the electrons
as a non-self-interacting gas, moving randomly in a box defined by the crystal
boundaries, and having a few phonon particles to “bump into.” Such a descrip-
tion goes by several names: the Fermi gas, the Drude metal, the Sommerfeld
model – all of these are slight variations on a theme. The features of that theme
are that the arrangement of the nuclei makes no difference to the electrons.
They are free, plane wave particles. When they interact, they enter each colli-
sion as a plane wave and emerge as a plane wave.

2. Modulated waves: If a quantum mechanical particle moves through a region
of space with some repeating field, such as an electron’s electrostatic inter-
action with a lattice, the overall effect of the interaction would be to modu-
late the electronic wavefunction. The modified wavefunction might now have
wavelengths that correspond to the lattice spacings. Indeed, this is not surpris-
ing when we remember the quantum problem of a plane wave approaching a
potential barrier at an energy higher than that of the barrier. We will later call
such waves as Bloch waves, but they are really just plane waves “passing over”
a series of such low energy potentials. Their form must be written as a Fourier
expansion of sines and cosines (Figure 6.2).

If the moving electron is high enough in energy and the repeating potential of
the lattice is low enough in strength, then the potential can be ignored. In this
case the momentum carried by the electrons is given by ℏk where k is simply
the wavevector of the free-electron wavefunction. However, modulated waves,
or Bloch waves, are made up of numerous kn’s, and that combination has been
somehow influenced by the spacing of the potential wells of the crystal lattice.
Thus, these interacting electrons will carry a momentum ℏK , where K is derived
from the reciprocal lattice, and we refer to this as crystal momentum, in a manner
analogous to phonons.

Naturally, both types of solid-state waves will have quantized energy values, as
waves confined to a box should. And there is a dispersion relation connecting
the energy to the momentum. As we might expect, the shape of the dispersion
relation is different from that of phonons (their dispersion was near linear at the
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Figure 6.2 (a) A plane wave compared with (b) a modulated wave.

origin of the BZ, resembling a classical wave with constant velocity: v = 𝜐k/2𝜋).
In contrast the electron dispersion relation is roughly quadratic E = ℏ

2k2/2m
near the BZ center – as expected for a classical particle with the kinetic energy
of E = p2/2m. For the modulated waves, m is usually not identical with the
free-electron mass. It is called the effective mass and is designated by m*. In
general, the effective mass is different for K pointing in different directions. To
keep the formula E = ℏ

2k2/2m*, the effective mass is even allowed to change
with K , and this allows us to treat the electrons in a crystal almost as if they were
free particles. The effective mass m* transforms as a tensor.

6.1.1.2 Localization
If, on the other hand, the electrons of the solid are more localized than delocal-
ized, then they can be better described as “hopping” from place to place. Yes,
they will still have some wave properties, and we will address this a little later.
But for the first models we treat, we will consider electrons with a relatively
high degree of delocalization. This is consistent with our initial picture of free
electrons.

6.1.2 Electrons Arrive as Particles: Statistics

Electrons may travel as waves but they arrive as particles. “Arrive” here is a
metaphor for being “observed.” This fact is no different from the case of phonons.
But there is a fundamental difference between electrons and phonons: when
they “arrive” they obey different statistics! Here, we use the word “statistics” to
describe how the particles fill available energy states in the solid. Phonons are
bosons, and for bosons there is a natural dictate of spin properties in particles
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and quasiparticles that says the Pauli exclusion principle does not apply. This
means it is possible to have many phonons in the same quantum state. And,
when we counted up phonons in Chapter 5, we allowed more than one phonon
with the same K vector in the same crystal.

Electrons, however, are fermions, and they must obey Fermi statistics, observ-
ing the Pauli exclusion principle. A given quantum state of the crystal system can
only be occupied by one such fermion. So for each K value, there are only two
electrons possible in a crystal, one with spin-up and one with spin-down. This
means the probability of state occupation function, f s(𝜔), we introduced before
for phonons will not work for fermions.

This difference is expressed in dramatic fashion as a solid is brought close to
absolute zero. All the phonons of the crystal are allowed to transition to the low-
est energy state at K = 0, and the atoms just vibrate in their zero-point motion
(quantum statistical noise). However, at this very low temperature, the electron
transition is to the lowest energy allowed by their statistics, meaning to the lowest
unoccupied state they can find. This means they will fill up the allowed K states
of the solid to very high energies, stacking up until you run out of electrons. So
unlike the phonons, a lot of energy is still packed in this “sea” of electrons (some-
times called a Fermi sea). The energy of the highest occupied state is called the
Fermi energy, EF, or the Fermi level. The corresponding wavevector is the Fermi
wavevector kF, and its reciprocal 2𝜋/kF is the Fermi wavelength 𝜆F.

In most metals the Fermi energy has very high, several electron volts, much
higher than the thermal energy kBT (kB =Boltzmann constant, T = temperature),
which is only about 30 meV at room temperature. Below the Fermi level, states are
all filled with electrons. This means electrons going in one crystal direction are
mirrored by states going in the opposite crystal direction, thereby usually having
no net influence on measured electronic properties. Only the electrons close to
the Fermi energy can be thermally excited into an unoccupied K state above the
Fermi level. The same is true for acceleration of electrons by an applied electric
field, or absorption of a photon, both of which involve a change of the K state.
Consequently, those very few electrons at the Fermi energy determine most of
the properties of a Fermi sea of electrons. This is why the Fermi energy, Fermi
wavevector, and Fermi wavelength are so important.

What, then, is the distribution function for state filling in electron statistics at
a finite temperature? In other words, when the electrons are excited above the
Fermi level by thermal energy absorbed into the system, how would the electrons
distribute themselves among the upper energy states available to them? This is
given by the Fermi–Dirac expression

f (𝜀) = 1∕[e(𝜀−𝜇)∕kBT + 1] (6.1)

f (𝜀) is the probability (a number between 0 and 1) of finding the 𝜀 energy state
occupied. 𝜇 is the chemical potential we learned about from electrochemistry
(the energy for adding one electron to the system). It is roughly equivalent to the
Fermi energy, but technically the Fermi energy changes with temperature since
𝜇 = Fn+ 1 − Fn where F is the Helmholtz energy (U −TS), where U is the internal
energy and S is the entropy.
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So, when we add up occupied states to get physical quantities, like total energies
(as we did for phonons), we must multiply this statistical probability with the
density of the states that are to be occupied, D(𝜀). The model chosen for the system
will determine the DOS, and, as we will see, it makes a big difference! So we will
spend a lot of time from system to system determining this quantity.

6.1.3 The Fermi Surface

In three dimensions, the dispersion relation for the electrons is different in dif-
ferent directions, so the set of electronic states to be filled are spaced differently,
and in each direction there is a well-defined Fermi vector. The tips of these vec-
tors define a surface in three-dimensional (3D) reciprocal space. This surface is
called the Fermi surface, and it reflects the symmetry of the crystal being con-
sidered. Because of EF = ℏ2kF

2/2m*, the symmetry of the Fermi surface is related
to the symmetry of the effective mass. For an isotropic solid it will be spherical:
the isotropic approximation. At one time the construction of 3D Fermi surfaces
for metals and alloys was a central theme in solid-state physics because it helped
scientists to understand anisotropies in low temperature conductivity.

To construct the Fermi surface of a one-dimensional (1D) metal, let’s use the
anisotropy limit introduced in Chapter 5. A small effective mass means that it is
easy to move the electrons. If in the case of a bundle of 1D chains the electrons
move easily along the chains but much less easily perpendicular to the chains,
the effective mass tensor and the Fermi surface will look like a lens (flat ellipsoid)
with a short axis in chain direction and two long axes perpendicular to the chains.
In the extreme case the Fermi surface will distort into two planes, as indicated in
Figure 6.3.

In Chapter 1 “open” Fermi surfaces were mentioned. The Fermi surface in
Figure 6.3 is open, because it consists of two parallel planes. Even if the Fermi
surface is slightly curved, it can still remain “open.” This effect can be understood
with the help of the Brillouin zones. If the Fermi surface has a very flat lens
shape, its diameter might be larger than the dimension of the first Brillouin zone.
The Fermi surface would close only in the second or even a higher Brillouin
zone. However, then it would be allowed to subtract the reciprocal lattice

x k
kF

x
kF

Figure 6.3 An idealized one-dimensional Fermi surface.
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vectors from kF, thus yielding an open Fermi surface, which is a criterion for one
dimensionality.

6.2 On to the Models

In metals, the electrons are plane waves as they encounter constant potentials or
modulated waves when experiencing locally varying potentials. As particles they
obey the Pauli exclusion. We can now introduce models of a solid’s electronic
structure.

6.2.1 The Free-Electron Model

There are aspects of a metal’s response to applied fields that suggest they contain
highly mobile electrons in large numbers. Some metals are better than others; for
instance, Au, Ag, and Cu are quite good conductors. We think of these “good con-
ductors” as a collection of free electrons that refuse to interact with each other.
But how does this happen in real materials? To a lowest-order approximation,
it is because the electrons were originally stripped off the lattice atoms, leaving
behind an ionic background of the lattice that effectively screens the freely mov-
ing electrons from each other more than we might expect. Actually this isn’t the
best way of thinking of it, but it does provide us a mental picture to get started.

This odd little picture is known as the free-electron model. In it the electrons
are thrown into a potential “box” defined by the background ions and screening
electrons around the ion cores. The electrons behave like a noninteracting gas
(thus the term electron gas is sometimes used in analogy with ideal gas). A cen-
tral aspect of this model is that the electrons are “noninteracting,” meaning they
don’t even “see” each other’s Coulomb repulsion.3 We will still require them to
obey Fermi–Dirac statistics though, so we can also use the term Fermi gas for the
model.4

The confinement of the electron wavefunction, and thus the dimensionality of
the system, is defined simply by the dimensions of this box. It is easiest to imagine
the box to have an infinite potential at its boundary as in Figure 6.4. Thus the
wavefunction goes to zero here. The solutions of the electron waves in this 1D
box look like

𝜓n = A sin(2π∕𝜆nx)where 𝜆n = 2L∕n (6.2)

3 This is at odds with our picture from classical electrodynamics. Typically, we do think of the free
electrons as being influenced by fields internal to the solid – thereby allowing the electrons to
respond by moving to the surface of the metal to maintain the condition E = 0 inside the metal.
Therefore, our picture is a little more complicated. We must think of the electrostatic interactions of
all the solid’s electrons and ions as balancing, allowing for the electrons to move freely internally
until an external field is applied.
4 This is not the only place in physics where the universe seems more concerned with her statistics
than her forces.
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Figure 6.4 An electron in a box. The dimensionality of the problem is defined by the
dimensions of the box.

The walls of the box are at x = 0 and x = L. Plugging this into the 1D SE, we get
the energy states of the waves allowed to exist within this box:

𝜀n = (ℏ2∕2m)(nπ∕L)2 (6.3)

The energy levels are quantized and are often called “orbitals” to make the
chemists happy. If we start tossing more electrons into this box, they will fill
up these states one by one according to the Fermi–Dirac statistics (obeying the
Pauli exclusion). Each level gets two electrons, a spin-up and spin-down version:
ms = ±1/2. Of course there may be some symmetry breaking that gives one spin
state a slightly higher energy than the other (breaking the degeneracy), but we
will ignore this for the moment. The maximum energy level for a given number
of electrons is this Fermi level we spoke of. We can write n (the state index) in
terms of the number of electrons, N , if we want: nFermi = N/2 at T = 0 K. Of
course we could not do this with bosonic particles like phonons; they can take
on any energy they want in any numbers. But with electrons (fermions) knowing
how many is knowing what energy.

Since we have begun by discussing the model for the 1D case, let’s see how
many electronic states we have in a differential element of energy, 𝜀, for the model
(remember ℏ = h/2𝜋):

𝜀 = n2h2∕8mL2 (6.4)

n =
√

8𝜀mL2∕h2 (6.5)

dn∕d𝜀 ∼ 1∕2
√

8mL2∕𝜀h2 (6.6)

D(𝜀) =
dn
d𝜀

unit
length ∼

√
2m∕𝜀h2 (6.7)



6.2 On to the Models 183

Free electron models as a function of dimension
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Figure 6.5 The density of electronic states in a 1D, 2D, and 3D free-electron metals (𝜀−1/2,
constant, 𝜀1/2) and the standard Fermi distribution.

Figure 6.5 compares the density of electronic states for a linear chain to other
free-electron metals. To get this we have followed the simple road map.

Let n be the desired dimension and xi = x, y and z

Volume of some set of states in k space, V:

Number of filled states in this volume, N:

Substitute: k = (2mε/ћ2)1/2

Volume of a single state in k space,Vs: Vs(k) = Π [π/xi] = (π/L)n

i

Vn(k) = 

(the factors of ½ are for double
counting, and the 2 is for spin)

N = 2 Vs/V (1/2)n

Then take dN/dε. D(ε)= 1/LD (dN/dε) the density of states per unit volume
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What is the internal energy of this collection of electrons in one dimension?
What thermal properties might we expect? We count up all the filled electronic
states and add the energies together:

U = 2
∑

f (kx)𝜀(kx) = 2L
∫
(dkx∕2π)f (kx)𝜀(kx) (6.8)

U is the internal energy, and the sum is over all k states (±). As the DOS consid-
ered is increased, the sum becomes an integral. Did you notice that we had to put
in the density of k states (L/2𝜋) and the “2” is for spin? This is in terms of k states,
and now we convert the integral to the energy variable

u = U∕L =
∫

d𝜀 𝜀D(𝜀)f (𝜀 − 𝜀f) (6.9)

u is the energy density and the integral goes from 0 to ∞. As is customary, we
have let the chemical potential be approximately equal to the Fermi energy

f (𝜀 − 𝜀f) = 1∕[e(𝜀−𝜀f )∕kBT + 1] (6.10)
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At T = 0 K this becomes
u = 1∕3 n𝜀f (6.11)

an expression for the internal energy associated with the electron distribution of
the solid. The Cv at finite temperature is left to the reader as an exercise. Extending
this concept to three dimensions is straightforward.

But what if the electrons were just a normal gas? From classical statistical
mechanics, where Fermi statistics are not used, the electron gas in three dimen-
sions should have had a heat capacity Cel ∼ 3/2NkB where U ∼ 3/2NkBT by the
equipartition theorem. However, what has been observed experimentally is
around 0.01 of this value. So, we see that the electrons contribute to conductivity
because they are mobile but are unable to contribute significantly to the heat
capacity.

Now we can understand that the reason the classical value fails lies in the Pauli
principle and the Fermi statistics. Specifically, when we heat the solid from very
low temperatures to higher temperatures, that heat energy is absorbed NOT by all
the electrons of the Fermi sea, for where would they go in energy? There is no state
to jump to. Instead, only electrons near the Fermi level have states into which they
may jump. So only the electrons in states within kBT of the Fermi energy absorb
energy and make a transition, thereby spreading out the Fermi distribution. This
is far, far fewer electrons than the N it takes to make up the solid. Consequently,
the energy stored in the distribution of “stimulated” electrons is far less than if all
N electrons could have participated.

6.2.2 Nearly Free Electrons, Energy Bands, Energy Gaps, Density
of States

The “free-electron model” treats the electrons in a crystal as semiclassical
particles with some statistics and confinement added on top. A completely
free-electron model fails to explain specific heat (and magnetic susceptibility) on
its own. So the Pauli exclusion principle had to be taken into account. Thus, we
used Fermi statistics to properly count the electrons, yielding the above “free-
electron Fermi gas.” However, if we treated all materials like this, they would all
be metals! To explain why silicon is a semiconductor or sodium is a metal, we
have to go one step further and allow for some influence of the crystal lattice
on the Fermi gas. This leads to a nearly free-electron gas model of Bloch, which
differs from the free Fermi gas in two important ways:
1. The free-electron mass m is replaced by the effective mass m* as we men-

tioned in the introduction to the chapter. The effective mass can be different
for electron motions in different crystallographic directions (see Section 6.1.3
discussion on the Fermi surface for a 1D solid). Consequently, m* is a tensor,
not a scalar (which, when concentrating on one dimension, does not matter,
of course). Moreover, m* will depend on the magnitude of the wavevector k,
and although the dispersion relation is given as E = ℏ2k2/2m*, the functional
dependence of E on k will deviate from the parabolic shape. The dispersion
relation can even have an inflection point at which m* will change sign and
become negative.
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2. The dispersion relation of a nearly free-electron gas is not continuous at the
edge of a Brillouin zone but will have jumps. Because of these discontinuities
the allowed energy values are confined to energy bands separated by forbid-
den gaps.
Now, let’s examine what this means and how it comes about. As with our pre-
vious discussions, we begin with the application to one dimension. We should
mention here that there are many excellent texts that focus solely on the devel-
opment of band structure calculations for real materials. But our purpose here
is to explore the underlying foundations of lattice–carrier interactions. To do
this we begin with a simple model for a periodic potential along a 1D chain.
This can be anything – a square well (the Kronig–Penney model), a set of delta
functions (the Dirac comb), or a set of atomic potentials. We insist only that
the interaction be periodic and relatively weak so that the electrons interacting
are still basically free to roam.

6.2.2.1 Bloch’s Theorem
The model to come next will introduce a repeating potential that somehow rep-
resents the crystal lattice. We will think of this as an infinite crystal in the sense
that there are many lattice sites and the ends of the lattice are matched bound-
aries (Born–von Karman boundary conditions). Thus, the differential equation
we must set about to solve looks like this:

𝜀𝜓(x) =
( 1

2m
p2 +U(x)

)
𝜓(x) =

(
1

2m
p2 +

∑

G
UGeiGx

)

𝜓(x) (6.12)

Before trying to solve this SE for our simple potentials, we must introduce the
theorem of Bloch. Bloch proved that SE solutions to any periodic potential must
have the form

𝜓k(x) = eikxuk(x) (6.13)

The exponential term is a simple plane wave, and the u term is a modulation
of that wave. We predicted above that this would happen. uk(x) is periodic and
must have the periodicity of the potential. Thus in one dimension,

uk(x) = uk(x + T) (6.14)

T is a translation vector of the lattice.
The Bloch theorem is the mathematical statement that the wavefunction will

become modulated, as we stated above. But it also gives us some specific details as
to this modulation. The theorem is among the most consequential in solid-state
physics.

6.2.2.2 The Nearly Free 1D Model
This is the Kronig–Penney model. The solution to the SE for a periodic potential

such as the one shown in Figure 6.6 is given by plane waves in and out of the
wells:
0≤ x≤ a (U = 0)

𝜓 = Aeikx + Beikx (6.15)
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0–b–(a + b) a a + b x

U(x)

Uo

Figure 6.6 The Kronig–Penney potential of repeating square wells. Each well has a width of b
and is positioned at sites a apart along the chain. The translation vector T is +/− sa where s is
an integer.

where

𝜀 = ℏ2k2∕2m (6.16)

−b≤ x≤ 0 (U = U0)

𝜓 = CeiQx + DeiQx (6.17)

where

U0 − 𝜀 = ℏ2Q2∕2m (6.18)

The Bloch theorem states that

𝜓(a < x < a + b) = 𝜓(−b < x < 0)eik(a+b) (6.19)

We also introduce conditions at the boundary of the line such that 𝜓(a) = 𝜓(0)
and d𝜓(a)/dx = d𝜓(0)/dx. This leads to a set of simultaneous equations – four
equations for the four unknowns. Setting the determinant of the matrix of these
equations to zero, we can find the coefficients

[
Q2 − K2

2QK

]
sin(Ka) sinh(Qb) + cos(Ka) cosh(Qb) = cos[k(a + b)] (6.20)

To get the Dirac comb, as mentioned in the beginning, we take the limit as b→ 0
and U0 →∞. This gives Qb→ 0, Q2b→ constant, K2b→ 0, sin(Kb)→Kb,
cos(Qb)→ 1. So the above becomes

(P∕Ka) sin(Ka) + cos(Ka) = cos(ka) (6.21)

P = Q2ba/2 = a constant, Q≫K , and Qb≪ 1, the familiar result for this model.
This relationship shows how 𝜀 (through K ; 𝜀 = ℏ2k2/2m) is related to the elec-

tron’s wavevector k. Notice that the cosine term on the right can take on terms
from−1 to+1 only. This limits the values that k (and thus 𝜀) may have. So for some
range of values of the energies, there exists no solution: there is an energy gap.
These are the so-called bandgaps of the system, and they can be shown to exist
for any shape of potential, not just the delta function or square potential here. In
fact, we can also see that such gaps occur at the Brillouin zone boundaries: here
cos(ka) takes on its maximum and minimum values.
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Figure 6.7 Electron dispersion relation for (a) free Fermi gas and (b) nearly free Fermi gas.

In Figure 6.7 the dispersion relation for free electrons and the result above for
Bloch’s nearly free-electron Fermi gas are compared. In the first case we have
a simple parabola, and in the latter case the parabola is distorted and shows
jumps where k passes from the first into the second Brillouin zone. At the zone
edge (k = ±𝜋/a), the dispersion function has two different energy values for the
same k value. The energy values are separated by Eg, the width of the forbidden
energy gap.

Physically, the energy gap can be explained as an interference phenomenon,
which is very simple in a 1D lattice. The electrons (or Bloch waves) are scattered
by the electrostatic potential of the positively charged metal ions at the lattice
points. The lattice points are separated by the lattice constant a. Waves backscat-
tered from adjacent ions have a path difference of 2a, and hence waves with this
wavelength interfere constructively. A wavelength a implies a wavevector k=𝜋/a.
At this point the discontinuities in the dispersion relations occur. Waves with
wavevector k = 𝜋/a are in geometrical “resonance” with the crystal lattice. They
are standing waves, not propagating waves. Two types of standing waves with
k = 𝜋/a can be formed: one type has nodes at the lattice points, and the other has
maxima at the lattice points. In one case the electrons are “between” the positive
ions, and in the other case they are “at” the ions. Evidently the energy for the two
cases is different so that there are two energy values for k = ±2𝜋/a.

So, certain electron energies are not allowed in a crystal for resonance reasons,
where the resonance is a consequence of the periodic potential of the positive
ions in the solid. Here an analogous example might be helpful. A similar situa-
tion exists on certain unpaved roads in the Sahara desert. Because of the camels
traveling along, there are periodic bumps in the road. French 2CV cars resonate
at 302 km/h. So the driver is forced to either stay below 28 or above 32 km/h. In
between there is a forbidden gap (Figure 6.8).

6.2.2.3 Analyzing the 1D Nearly Free Solutions
As we saw in the free-electron model, to get to various physical phenomena, we
must know the electronic DOS or the number of electronic states per energy
interval. But, unlike the free electron model, interactions with the ion potentials
yield a forbidden energy gap where the DOS is apparently zero.

Figure 6.9 shows the electronic dispersion relation between k = 0 and k = 𝜋/a
(as explained above, one half of the first Brillouin zone), together with the DOS.
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Figure 6.8 The structure of certain Sahara roads allows one only to drive well below or well
above 30 km/h. Between 28 and 32 km/h, there is a forbidden gap.

k DOS

ε(k)ε(k)

Van Hove singularities

π/a

Figure 6.9 1D electron dispersion relation (left) and DOS (right).
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The number of allowed k values in a Brillouin zone is large but finite. As we
pointed out before, it is discrete because the electronic states are discrete when
the electrons are confined in a box. The allowed k values are equally spaced along
the x axis. To get the DOS the dispersion relation is projected onto the energy
axis. At places where the dispersion relation is flat, the DOS is high and vice
versa because dk/d𝜀→∞. That is, at horizontal parts of the dispersion relation,
the DOS is infinite. The points of infinite DOS are called van Hove singularities
and play an important role in 1D solid-state physics.

Because this is for a rigid 1D solid, Figure 6.9 also shows the van Hove sin-
gularities for k = 0 and for k = 𝜋/a, i.e. the bottom and the top of the energy
band. If the solid is 3D, k vectors point into all directions of space, and the num-
ber of k values within a k interval increases with k, thus compensating the van
Hove singularity at k = 0. This k count finally leads to the characteristic dimen-
sionality behavior of DOS as indicated in Figure 1.18: parabolic in shape in three
dimensions, step function in two dimensions, and square root singularity in one
dimension.

As we now know, many properties of a solid are determined by the DOS at
the Fermi energy, N(EF). We recall that electrons are fermions and obey Fermi
statistics, i.e. we can accommodate only one electron in a quantum state (labeled
by k and spin-up or spin-down). In simple words, we “pour” the electrons into
the crystal, they fill up the dispersion relation, and at places where we run out of
electrons, there is the Fermi level, the highest occupied electronic state. If there
are as many electrons as there are k values in the first Brillouin zone, the Fermi
level is at the top of the band. Adding the next electron causes it to jump to the
bottom of the next band. Strictly speaking, this is only true for absolute zero,
where the Fermi distribution is sharp and where there are no thermal excitations
in the electron system. Otherwise the Fermi level is defined in a somewhat more
complicated way, and for a completely filled band, the Fermi level is placed into
the center of the gap above the filled band. Technically, as we saw above, this is
the electron affinity or chemical potential – not the Fermi level, since it is in the
forbidden region.

This is for a perfectly rigid 1D material. How would we think of electronic
structure in three dimensions? Actually, it really isn’t so hard to imagine. Notice
that the SE is spatially separable if we use potentials that are well behaved and
local: square wells, atomic orbitals, delta functions, etc. To understand the prob-
lem of electronic structure in three dimensions, we examine solutions of the SE
along specific projections of the crystal lattice, thereby capturing the dynam-
ics of electrons that might move along those directions. Solutions along these
directions in space will yield bands, band-state filling and Fermi levels, and every
other kind of characteristic that we have seen in the 1D problem. The Fermi
points of the 1D problem become Fermi surfaces in three dimensions (we have
already alluded to this). And one must adopt a multidimensional plotting scheme
to express what the bands are doing along the different directions as is shown
in Figure 6.10.
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Figure 6.10 The band diagram for silicon.

6.2.2.4 Extending Dispersion Curves to 3D

As we go from

three dimensions

to one, our “cat”

look much less

like Schrödinger’s

and more like

Lewis Carroll’s

with properties

disappearing

one-by-one

The Cheshire cat

Extending Dispersion Curves to 3D 

It can be quite entertaining to compare properties of materials in different
dimensions. As we shrink a material from three dimensions to one dimension,
we see its commonly identified features fade away, like the Cheshire Cat, leaving
only a vestige of its fully dimensional self left behind.
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Following our 1D example above, in two and three dimensions, we are faced
with a really important subtlety. We see this in Figure 6.10: that is, the transition
between highest valence band and lowest conduction band states varies across
the Brillouin zone. That is, as one looks along different directions of the crystal,
the periodicity and local potentials of the atomic arrangement may lead to differ-
ent band structures and different bandgaps. Moreover, there are many examples
where the minimum of the conduction band does not occur at the same k value
as the maximum in the valence band. This means for the electron to make such
a transition, it must also change the direction of its k vector. Materials for which
this is true are called indirect bandgap semiconductors. Materials for which the
reverse is true, highest occupied molecular orbital (HOMO) and lowest unoccu-
pied molecular orbital (LUMO), occur at the same value of k, and these are called
direct bandgap semiconductors.

This distinction can be pretty important for specific bandgap transition-related
properties such as luminescence. Ever wondered why Si doesn’t photoluminesce?
Why don’t we make light-emitting diodes (LEDs) from this material? Simple, it
is an indirect bandgap semiconductor. For a direct bandgap semiconductor, the
direct conduction band to valence band transition can yield a photon. However, in
an indirect bandgap semiconductor, the electron must go through an intermedi-
ate state and transfer momentum to the crystal; a longer process and photons are
not emitted. As a general rule transitions across the bandgap are made from the
conduction band minimum (LUMO) and the valence band maximum (HOMO).
This is because intra-band transitions are much, much faster than bandgap
transitions. The intra-band transitions are transitions made among the tightly
spaced states of the band itself, and they are on the order of thermal excitations.
So the process of an excited electron “settling” to the conduction band minimum
quickly is referred to as thermalization of the carrier. Importantly, we note that
phenomena, like the indirect vs. direct bandgap division in semiconductors,
go away as the dimension of the system is reduced. Si nanocrystals do, in fact,
luminesce.

Hold on a minute! The bands of Figure 6.10 are not nice and symmetric the way
you might think a 3D Kronig–Penney calculation would yield. What gives? 3D
Kronig–Penney was not used for this figure, in fact. We might suspect that the Si
atom binds its electrons somewhat tighter than our nearly free-electron model
would wish. What happens when the electrons are more strongly associated
with a given location? Like an atomic orbital? As in Figure 6.10, we apply a
new approach known as linear combination of atomic orbitals (LCAOs) or
tight binding. In fact, nearly free-electron approximations are not very good
for semiconductors in general. Shown in Figure 6.11 is a comparison between
the nearly free-electron bands of germanium and our next approximation,
LCAO.

6.2.3 Tight Binding or Linear Combination of Atomic Orbitals

Tight binding or LCAO has two names because it can be thought of in two ways.
Depending on if you are a physicist or a chemist, you are likely to see LCAO from
very different philosophical perspectives. For instance, a physicist and a chemist
are sitting in a bar. A graduate student asks about the deeper mysteries of band
structure calculations. Both describe exactly the same approximation:
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Figure 6.11 Nearly free-electron approximation and the LCAO approximation. The
approximation here has been worked for Ge, while the above was for Si. It has been plotted
using the 3D representation we introduced in Figure 6.10.

Dr. Physicist: “To “turn up” the electron–static lattice interaction a little
more, we start with an infinite array of atomic orbitals as the potential
in a Kronig–Penney type of scheme (replacing the artificial square wells).
Symmetries and equations stay largely the same as in previous examples, but
the shape of the potential changes. This can give great insight into the role
this potential plays in band structure symmetries. This is the approach we call
tight binding. It is simple and elegant. May I have another beer?”

Dr. Chemist: “Based on the assumption that the electrons are localized at atoms or
molecules, we begin by using molecular orbitals to build a molecule that is ever
increasing in size. For many organic solids this is particularly appropriate. As
these building blocks come together, their orbitals interact, and the result is a
splitting of the energy levels: instead of one electron associated with each build-
ing block, each with the same energy, you now get an energy level that is higher
and one that is lower from those that you started with, and the two electrons
can occupy either of the states. In molecular pairs this is known as Davydov
splitting. As more building blocks (atoms or molecules) are added to the sys-
tem, this splitting leads to a grouping of the states (they “bunch” together),
and in many-particle systems, like a crystal, the grouping leads to an energy
band. The bandwidth is directly related to the overlap of the wavefunctions
(some million electron volts up to some electron volts). The dispersion rela-
tion (band structure) is obtained by passing s-shaped curves through the end
points known as the parabolic approach. To calculate the actual band structure
in this manner, extended expertise in quantum chemistry and fairly large com-
puter power are essential. It is complex and difficult, and I think I shall need
something a bit stronger than a beer.”

In our discussion here, we shall not take sides, but instead try to introduce the
language of both of our hypothetical mentors above.
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6.2.3.1 The Formalism5

In a crystal, the single particle states are given by

H = Hat + ΔU (6.22)

ΔU is the variation of the potential from free space, and Hat is the Hamiltonian
for a free atom. This ΔU goes to zero at the center of each atomic site. The single
particle states are then given by

H𝜓nk(r) = Enk𝜓nk(r) (6.23)

where n is the band index and k is the wavevector inside the first BZ. The atomic
wavefunctions are simply

Hat𝜙i(r) = 𝜀i𝜙i(r) (6.24)

and 𝜀i is the ith energy level of the isolated atom. These wavefunctions decay
rapidly away from r = 0, and so the overlap integral between the wavefunctions
of the isolated atoms is small:

∫
𝜙
∗
i (r)H𝜙i(r + R)dr (6.25)

where R describes the positions of the atoms in the crystal. We note that the
atomic orbitals we use in this discussion are all orthonormal, so,

∫
𝜙
∗
i (r)𝜙j(r + R)dr =

{
1 if i = j and R = 0
0 otherwise

(6.26)

For a simple 1D string of atoms, this would look something like in Figure 6.12.
As before, we insist that our single particle states of the system (𝜓nk) obey

Bloch’s theorem:

𝜓nk(r + R) = eik⋅R
𝜓nk(r) (6.27)

–1 0 1 2 3

Overlap integral Atoms

ao ϕ∗ϕ

4 r

Figure 6.12 There is very little overlap between each of the adjacent sites and no overlap
between sites further apart. The translation vector here is R and is modulo (a0).

5 This treatment was brought to our attention by Professor Mervyn Roy at the University
of Leicester in the United Kingdom. We have followed his notes.
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where R is the translation vector of the lattice. And we want to build these states
from the atomic orbitals (𝜙) since they revert to “atomic like” near the lattice site.
Thus, we must construct the state from the atomic orbitals in such a way that it
does:

𝜓nk(r) =
1

√
N

∑

R
eik⋅R

𝜙n(r − R) (6.28)

where there are N lattice sites and the 1/
√

N term ensures normalization.
Believe it or not, this is all we need to start with. From here we must now decide

on the atomic orbitals that will interact (that is, overlap) with each other. We have
chosen to start with the convention that the atomic orbitals are orthonormal, so
the atomic wavefunctions must be of the same type to form a band: thus s orbitals
interact with s orbitals, p orbitals interact with p orbitals, d orbitals interact with d
orbitals, and so on. Any set of orbitals with significant enough overlap will form
a band of single particle states for the system. The generalization to hybridized
bands such as s interacting with p to form sp hybridization is important for semi-
conductors like Si, but for now, we will stick with the easy case.

6.2.3.2 The s-Band
We begin by considering a set of atoms brought together in which only the s
orbitals overlap with each other. Then there will be only one band, and its Bloch
state will be given as

𝜓k(r) =
1

√
N

∑

R
eik⋅R

𝜙s(r − R) (6.29)

and the energy will be given as

E(k) =
∫
𝜓
∗
k (r)H𝜓k(r)dr (6.30)

and the integral of the expectation value is over all space as usual. Substituting
the Bloch expression we then get

E(k) = 1
N

∑

R

∑

R′

eik⋅(R′−R)
∫
𝜙
∗
s (r − R)H𝜙s(r − R)dr (6.31)

E(k) = 1
N

∑

R

∑

R′

eik⋅(R′−R)
∫
𝜙
∗
s (x)H𝜙s(x − (R′ − R))dx (6.32)

where in the top integral, we have used the R′ to mean a separate lattice sum with
R′ ≠R. In the second integral, we have changed variables with x = r−R. Now we
notice that the sums are over translation vectors generally. Thus R−R′ = R′′ that
is just another translation vector. Since we get the same answer no matter what
we call the translation vector,

E(k) = 1
N

∑

R

∑

R′′

eik⋅R′′

∫
𝜙
∗
s (x)H𝜙s(x − R′′)dx (6.33)

but the terms of the two sums are now identical, and so we can write

E(k) =
∑

R′′

eik⋅R′′

∫
𝜙
∗
s (x)H𝜙s(x − R′′)dx (6.34)

Notice that the sum we got rid of simply gave us another N .
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We now separate out terms in the sums by how much overlap there is between
s orbitals: that is, how large the integral is tells us how much each term in the sum
counts.
If R′′ = 0,

𝜀s = ∫
𝜙
∗
s (x)H𝜙s(x)dx =

∫
𝜙
∗
s (x)𝜀s𝜙s(x)dx (6.35)

or just the energy of the atomic orbital itself in a free atom.
If |R′′| is large,

0 ≈
∫
𝜙
∗
s (x)H𝜙s(x − R′′)dx (6.36)

since we already said the atomic orbitals decay rapidly from the atomic positions.
So generally, the semiempirical tight binding approach includes only the con-

tributions to the sum that are very close. Let’s say within one lattice translation
away, a0. We will call this lattice translation 𝜏 and we can write

E(k) = 𝜀s +
∑

𝝉

eik⋅𝝉
∫
𝜙
∗
s (x)H𝜙s(x − 𝝉)dx (6.37)

So, the crux of the matter is that the s band will look like plane waves modulated
by the overlap integral – the amount of the wavefunction between the two lattice
sites that actually occupies the same space. The energy is likewise shifted as

𝛾(|𝝉|) =
∫
𝜙
∗
s (x)H𝜙s(x − 𝝉)dx (6.38)

so,

E(k) = 𝜀s +
∑

𝝉

eik⋅𝝉
𝛾(|𝝉|) (6.39)

At this point it is often common to introduce some sort of empirical relation
for the overlap integral as a function of the separation |𝜏|. This can allow one
to examine how applied strain on the crystal, for instance, might alter expected
band development.

6.2.3.3 s Bands in One Dimension
The above formulation is really set up for a 1D problem. Let’s examine this for
a moment. Take the atoms to lie along the x axis. So 𝝉 = a0î using the standard
notation for the unit vector in x. Also k = kî. So we can substitute and write
(Figure 6.13)

E(k) = 𝜀s + 𝛾(a0)(eika0 + e−ika0) (6.40)
E(k) = 𝜀s + 2𝛾(a0) cos(ka0) (6.41)

6.2.3.4 s Bands in Two Dimensions
Similarly, we can set up the problem in two dimensions. Our crystal for this
example will be a two-dimensional rectangular net as shown in Figure 6.14.

Working the sum out, we split k into kx and ky and 𝜏 into a and b to get
E(kx, ky) = 𝜀s + 2𝛾(a) cos(kxa) + 2𝛾(b) cos(kyb) (6.42)
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E

εs + 2γ

εs – 2γ

εs

0

4γ

–π/a0 π/a0

k

Figure 6.13 The dispersion curve E(k) for a one-dimensional system using tight binding code
in Mathematica. Notice however that we have done this in terms of the overlap integral,
so such details are not yet included in the calculation, which means absolute energies are
not given.

i

j

b

a

2π/b

2π/a

g2

g1 kx

ky

(a) (b)

Figure 6.14 (a) The real space lattice and (b) the reciprocal space lattice of our 2D system.

If you have forgotten how to do the dot products, look back at the reciprocal
lattice chapter. We can put some numbers onto this: let’s take a = 0.5 nm and
b = 1.0 nm and 𝛾(a) = 1 eV and 𝛾(b) = 0.5 eV. Finally we take 𝜀s = 2.0 eV. Then we
get Figure 6.15.

6.2.3.5 s Bands in Three Dimensions
Moving to a 3D example is now very simple. We have

E(k) = 𝜀s +
∑

𝝉

eik⋅𝝉
𝛾(|𝝉|) (6.43)
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Figure 6.15 Plots of the dispersion curves for both the kx and ky directions of the 2D crystal.
The choices we made above were really artificial, and the s-like character never really entered
into the calculation except through these choices.

k = (kx, ky, kz) (6.44)

𝝉 = a
2
(±1,±1, 0); a

2
(±1, 0,±1); a

2
(0,±1,±1) (6.45)

The translation vectors clearly describe a face-centered cubic (you should graph
this out to make sure you see why). There will be 12 nearest neighbors, so a few
more terms in the sum than before.

A little algebra and we get
E(kx, ky, kz)

= 𝜀s + 4𝛾(|𝝉|)
(

cos
kxa
2

cos
kya
2
+ cos

kya
2

cos
kza
2
+ cos

kza
2

cos
kxa
2

)

(6.46)

where |𝜏| = a/
√

2.

6.2.4 What About Orbitals Other Than s?

The overlap integral 𝛾(𝜏) really determines most of the interesting physics here.
How it depends on distance is set by the different sorts of orbitals that might
be used. s and p, for instance, can extend into space much further than, say, a d
orbital. This integral can be fit to data or set equal to some phenomenological
model. In doing so, the bandwidth will change as will the curvature overall. The
real significance of s vs. p orbitals shows up when more than one orbital is con-
tributing bands. Think, for example, of conjugated polymer systems. They are
usually bonded together by the s orbitals, whereas the p orbital-derived bands
supply the ability to conduct electrical current. This means that the equilibrium
of the s orbitals sets the distances used in the p orbital overlap integrals. We will
examine this in more detail in a moment, but there is one more thought to add.
The curvature is inversely related to the effective mass of the carrier as we stated
above. This means the smaller the overlap integral, the heavier the effective mass,
which makes sense.
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6.2.4.1 Building Bands in a Polymer
At the beginning of our discussion, we noted the equivalence between the
“solid-state physics” picture and a more “macromolecular” or “chemistry.” We
said this was particularly useful in constructing bands in a polymer system. From
one point of view, one dimensionality, as expressed by polymers, is simply the
confinement of the Bloch waves in lateral dimensions and the modulation of the
traveling wave in the axial dimension of the structure. Alternatively, this can be
seen as a very large molecule generally, and charge transport is related to the
delocalization associated with specific excited states of the molecule. Now that
we have presented the first way of looking at bands, it seems a good place in the
analysis to examine this second “macromolecular” way of viewing things [2].

6.2.4.2 Bonding and Antibonding States
To begin we must understand that bonding two atoms together leads to a low-
ering of the overall electronic energy. Consider the hydrogen atom as depicted
graphically in Figure 6.16.

The solutions to the SE for the hydrogen ground state yield a wavefunction that
(in space) falls off exponentially as a function of the radius away from the nucleus.
The ground state energy of this system is 1 Rydberg (13.6 eV). Now we approach
this hydrogen atom with a second hydrogen atom – dihydrogen. As shown in
Figure 6.17, this results in an interaction between the electrons such that two pos-
sible states can exist – one is a bonding state and the other an antibonding state.

What you get by doing this is obviously an H2 molecule. The distance between
the atoms is set by the balance of attractive and repulsive forces with the attractive
force being derived from the lowering of electronic energy. Notice that just as
above, the s orbitals are doing the work here, and the overlap integral is fairly easy
to calculate. The s orbital is isotropic about the atom and, thus, so is the force of
attraction. Thus, of course, it would not be the case if p orbitals were doing the
binding. Because the “bonding orbital” is formed using s orbitals from the atom,
we use the symbol 𝜎 as its designation.

It is important to note that the bonding state yields increased electron density
between the atomic nuclei – this is the “bond.” In the antibonding state, there
is a node in the electron density between the nuclei. This state lies at a much
higher energy than the bonding state, and there must be a transition from the
lower state, which is filled, to the excited antibonding state, which is empty in the
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E

Vacuum level0 eV

–13.6 eV

Figure 6.16 The hydrogen atom with its one electron and filled ground state.
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Figure 6.17 The interaction of two hydrogen atoms (a and b) leads to two possible
states – bonding and antibonding.

0 eV

–13.6 eV

E

σ Bonding molecular orbital

σ∗ Antibonding molecular orbital

Figure 6.18 The energy states of hydrogen starting with the separate atoms and then
combining into the molecule.

ground state of the system. This splitting is generally drawn in an energy state
diagram as in Figure 6.18.

6.2.4.3 The Polyenes
Using the same basic reasoning as above, we begin to construct the polymer. But
instead of hydrogen atoms, we use methyl radicals. Shown in Figure 6.19 is the
methyl radical that will be our basic building block of our first polymer system.
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Figure 6.19 The methyl radical that will be used to “build a polymer.”
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Figure 6.20 The ethylene (=dimethyl) molecule formed by interacting two methyl radicals
together.

At the center of the lobes (electron cloud density) in Figure 6.19 is the carbon
atom, and it has four electrons in its outer shell to use in the formation of bonds.
We have used three of them in plane to make the 𝜎 bonds to the hydrogen. These
bonds are saturated in the sense of our earlier descriptions, so the energy diagram
shows the spins of both the electrons from the C and the electrons from the H ’s.
There is another electron, and it is placed into the pz orbital to form 𝜋 bonds. Due
to symmetry considerations this electron does not mix with the in-plane 𝜎 bonds.

You might have noticed that the 𝜎 bonds that are derived from s orbitals no
longer have that isotropic character that we would expect from the s orbital. In
this figure we are showing the radical with saturating values of H attached, and
they have some Coulombic repulsion associated with them.

Our next step is to “interact” this methyl group with a second methyl group
to form the ethylene molecule. As shown in Figure 6.20, we now have the 𝜎
bonds interacting in plane and the 𝜋 orbitals interacting laterally above and
below the plane.
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Figure 6.21 Butadiene is essentially two interacting methylene molecules. It now has four 𝜋
bonds.

Notice on the left that the hydrogens have been removed from the bonds that
are now shared between the groups. There are two electrons in this shared𝜎 bond.
The 𝜋 bonds now take on a bonding–antibonding nature as seen on the right.
There is a 1 node and a 0 node state just as in the case of the hydrogen earlier. One
represents the ground state of the system and it is filled. To excite an electron into
the antibonding state takes ∼7 eV.

We now add two more methyl groups to form an even longer molecule. As
shown in Figure 6.21, this results in four interacting 𝜋 bonds and is referred to
as butadiene. Again, the 𝜎 bonds are in place and the 𝜋 bonds do not mix with
the in-plane electrons. Notice that there are many more ways in which the wave-
functions can have nodes and antinodes within the interacting 𝜋 electrons.

Notice too that we have used the chemical symbolism of double and single
bonds to enumerate the wavefunction symmetries and their related state filling
as in Figure 6.22.

The highest filled state, the HOMO level, has one node, and the LUMO is
with two nodes. All other states have a higher number of nodes and thus are
higher in energy. To transition from the HOMO to the LUMO in this system,
one must use ∼5.4 eV. So the gap has closed slightly between filled and unfilled
orbitals.

So far this is easy to reason, and the various states that make up the “bands”
of occupied and unoccupied orbitals are simply combinations of interactions
between the 𝜋 electrons. The lowest number of nodes is the lowest energy states
and therefore the filled states. If we “interact” three ethylene subunits together,
the number of combinations of interactions (bonding and antibonding) becomes
even greater as seen in Figure 6.23.

In hexatriene, the six 𝜋 orbitals can range from having 0 nodes to 5 nodes, and
the energy states are beginning to “clump” together into the filled states and the
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HOMO
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Figure 6.22 A transition from the LUMO to the
HOMO dramatically alters the bonding symmetry.
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Figure 6.23 Hexatriene with three ethylene subunits yielding six possible interaction sites.
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Electronic band structure of polyacetylene

Figure 6.24 The band structure achieved by adding many ethylene subunits together.

unfilled states. Each “band” using solid-state language now has three states in
it, defined by the symmetries of the bonding or antibonding wavefunctions. We
also notice that the energy gap between the LUMO and HOMO has decreased
even further to ∼4.7 eV. The symbol we use to describe the hexatriene molecule
looks like a truncated conjugated polymer symbol and reflects the LUMO of the
macromolecule.

This molecule is already large enough to begin to make some connections with
the solid-state language we used above. In the absence of the𝜋 electrons – let’s say
by saturation – we have essentially the alkanes. They have a single bond length of
∼1.52 Å. However if this saturation is removed – essentially the same as adding
free electrons to this system, these 𝜋 electrons distribute themselves unevenly
by alternating the bonding between single and double bonds of 1.47 and 1.34 Å,
respectively. In Chapter 7 we will see that this is the natural result of the compe-
tition between bond strain energy and electronic state energy.

If we continue this process, adding more and more interacting ethylene sub-
units, the energies of the states in the unfilled band and the filled band become
closer and closer. The gap in energy between the LUMO and HOMO also contin-
ues the trend of getting smaller. In Figure 6.24 we have carried this out for a very
large number of ethylene molecules – this is typically done on a computer using
a method known as the LCAOs – which is the method we have been following
diagrammatically here.

6.2.4.4 Translating to Bloch’s Theorem
As we have seen previously, Bloch’s theorem uses the translational repeat sym-
metry of the infinite system to construct a description of the state energies within
a band as a function of the “crystal momentum” k. So one can focus only on the
repeating unit cell and its interactions with neighbors as in Figure 6.25.

Recall that the theorem states that the electron density at point r in cell j
(j = integer) must be equal to the electron density at point r in the origin cell.
This is expressed in terms of the modulus of the wavefunction

∣ Ψ(r + ja)|2 = ∣ Ψ(r)|2 (6.47)
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unit of the polyacetylene
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Figure 6.26 The extended band structure of the simple Bloch model.

or as we stated it previously,

Ψ(r + ja) = eik⋅jaΨ(r) (6.48)

and the modulus of this phase factor is simply 1.
For the simple models we presented before, we saw that this gave rise to the

band structure diagram of Figure 6.26.
But note that now we have labeled these as 𝜋 and 𝜋* bands. Let’s examine the

𝜋 and 𝜋* bands a little more closely. Figures 6.27 and 6.28 show the wavefunction
symmetries at the band edges (𝜋 band and 𝜋* band, respectively).

For polyacetylene the 𝜋 band is filled and the 𝜋* band is empty. As in Bloch’s
theory earlier, we expect a semiconductor. But what gap should we expect
in energies at k = 𝜋/a? Bloch’s approach details this in terms of strength of
interacting potentials. In this molecular orbital picture, it becomes clear that the
nature (let’s say the symmetry or bonding) of the wavefunction at the HOMO
and LUMO edges for k = 𝜋/a must represent different state energies – i.e.
nondegenerate. But examine the wavefunction symmetries of the band edges
at k = 𝜋/a closely. The first Brillouin zone is shown in Figure 6.29 along with
wavefunction symmetries.

In Figure 6.29 we can see that the interaction symmetries in the A (LUMO)
and B (HOMO) wavefunction p orbitals would look the same if we simply shift
the definition of the unit cell in B over by one atom. But in doing so in B the
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Figure 6.27 (a) Fully bonded wavefunction at k = 0: eikja = e0 = 1. (b) Wavefunction bonding
on the double bonds and antibonding on the single bonds at k = 𝜋/a: eikja = 1 for j even
and− 1 for j odd.
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k = π/a

k = 0

–1 0 1 2 3
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Figure 6.28 The top and bottom of the valence (or 𝜋*) band also goes from one combination
of bonding and antibonding states to another. Those combinations now enumerate the k
values of the states.

unit cells would be defined as a single-bonded dimer that is double bonded to
its nearest neighbors, whereas the A definition would be a double-bonded dimer
with a single bond between nearest neighbors. Since this is the HOMO–LUMO
of the system, we will refer to this state as the ground state of the system, and if
the 𝜎 bonds are all of the same length, then clearly this ground state is degenerate.
More precisely stated, the 𝜋 and 𝜋* bands at k = 𝜋/a would be degenerate. We
would expect for there to be no bandgap.

As you may have already guessed, polyacetylene is a special example. Specif-
ically, for the trans-polyacetylene system, there is no extrinsic dimerization,
and thus it has no extrinsic bandgap. The dimerization occurs entirely due
to the addition of the 𝜋 electrons coupling to the lattice. Thus, the A and B
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Figure 6.29 The symmetries of the wavefunctions at the k = 𝜋/a band edge are strikingly
similar (A and B above). Notice that one becomes the other if we were to shift the definition of
our unit cell over by one atom.

phases are degenerate. This is not true in most other polymers where there is an
extrinsic dimerization due to the stereochemistry of the 𝜎 bonds. For instance,
cis-polyacetylene has an extrinsic bandgap due to its 𝜎 orbitals. The situation is
different for different polymers.

The ground state situation from trans-polyacetylene is shown in Figure 6.30.
As we will see, if the 𝜋 electrons are simply added to the system and allowed to
delocalize, then the systems energy would sit on the unstable point atΔ𝜋 = 0. We
now know, however, that this does NOT happen. Instead some energy is gained
by “strain” in the 𝜎 bond “springs,” and some is lost in the 𝜋 bond alternation
due to a Peierls distortion. The next result is a lowering of system energy.
Δ𝜋 = (𝜋C—C −𝜋C=C) and the energy gained E∼ (Δ𝜋4 −Δ𝜋2). Experimentally,
Δ𝜋0 ∼ 0.08 Å. This opens up the bandgap seen in Figure 6.29.

6.2.5 Tight Binding with a Basis

Typically, when calculating a band structure for some material, there will be
a basis involved: more than one atom in the unit cell. In fact, this is where
tight binding approaches can become really helpful, that is, when basis sets get
really large.

Actually dealing with this isn’t so hard, and we shall use an example in 1D to
help us: trans-polyacetylene. It looks like this (Figure 6.31).

In our example there are two basis atoms, one at (0,0) and one at RAB = (a/2,
a/2

√
3). In a crystal with Nb basis atoms (wherein only one type of orbital is
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Figure 6.30 The degenerate
ground state of acetylene.
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Figure 6.31 Labeling trans-polyacetylene. The translation vector is modulo (a), and the basis
atoms lie a/2 along the x axis but are offset. Here we have shown the conjugated bonds:
alternating single and double bonds. However, we have not included the slight difference in
bond lengths (for simplicity). The two different atoms of the basis are marked A and B.

contributing to the bands), then we can make Nb linear combinations of orbitals
that satisfy Bloch’s theorem:

Φik(r) =
1

√
N

∑

Ri

eik⋅Ri𝜙(r − Ri) (6.49)

The index i = 1, 2, 3, …, Nb. This labels the different atoms of the basis, and
the translation vector Ri is the vector that translates the between atoms of type i.
In our simple example i would label atoms A and B. The translation vectors would



208 6 Electrons in Solids

be RA = ±aî, ±2aî, ±3aî, etc. and RB = RAB ± aî, RAB ± 2aî, etc., where RAB is
the vector between the atoms in the basis. î and 𝒋 are unit vectors in x and y,
respectively.

The crystal states can be expanded as

𝜓nk(r) =
1

√
N

∑

i
cikΦik(r) (6.50)

𝜓nk(r) =
1

√
N

∑

i
cik

∑

Ri

eik⋅Ri𝜙(r − Ri) (6.51)

But how do we find out what the coefficients cik are? Clearly, the “correct” or
physical wavefunction is the one that minimizes the energy in the eigenvalue
problem. This means we will have to turn to some variational principle to deter-
mine the coefficient choices that yield the lowest energy state. Stated in another
way, in the above case with only one atom contributing per unit cell, this step
was unnecessary. The modulation of the single particle wavefunction was clear
because the isolated atoms had only a single spacing and multiples thereof to
contribute to the sums. Now that there are multiple atoms contributing at various
positions within the unit cell, this translational symmetry is much more compli-
cated, and the balance of how the orbitals add up to yield the band of interest
must be determined.

Applying the variational principle to the energy expectation value, we get a set
of simultaneous equations:

∑

i
(Hij − 𝛿ijE(k))cik = 0 where Hij = ⟨Φik ∣ H ∣ Φjk⟩ (6.52)

This means the determinant must be zero:

|H − E(k)I| = 0 (6.53)

where we have written the matrix of the Hij elements as H and I is the identity
matrix.

In our two-atom basis example, this means
||||
HAA − E HAB

HBA HBB − E
||||
= 0 (6.54)

where we note that obviously HAB = HBA
*. This simple quadratic equation has

two solutions expressed as

E(k) = −1
2
(HAA +HBB) ±

√
1
4
(HAA −HBB)2 + |HAB|2 (6.55)

This means that we get two solutions for E at every k point or two bands occur!
Now we calculate the Hamiltonian matrix elements in exactly the same way we
did above for the s band example. For our trans-polyacetylene example, each car-
bon atom is contributing a single p orbital to the conduction and valence bands.
Notice that the s bands are also there, holding things together, but we are inter-
ested in the bands responsible for the flow of current. So for the p bands, we have

HAA =
1
N

∑

RA

∑

R′
A

eik⋅(R′
A−RA)

∫
𝜙
∗
s (r − RA)H𝜙s(r − R′

A)dr (6.56)
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HAA =
∑

R′′
A

eik⋅R′′
A

∫
𝜙
∗
s (r − RA)H𝜙s(x − R′′

A)dx (6.57)

HAA = 𝜀p +
∑

m≠0
eimka

𝛾(|ma|) (6.58)

We have used the index m to count over the orbitals along the chain. It can take
on positive and negative values. k lies along the x direction. We follow exactly the
same for HBB.

We can now make a few assumptions about the nature of the pz orbital so as to
allow for a solution of the integrals. Let’s assume that the overlap integral falls off
so fast that it can be restricted to having a significant value only for distance< a.
This means that 𝛾(ma)∼ 0 for |m|> 1. Specifically, this leaves us with

HAA = HBB = 𝜀p + 2𝛾(a) cos(ka) (6.59)
Now what about HAB? This is the overlap between the bases of a single cell:

HAB =
1
N

∑

RA

∑

RB

eik⋅(RA−RB)
∫
𝜙
∗
s (r − RA)H𝜙s(r − RB)dr (6.60)

HAB =
1
N

∑

R′
A

eik⋅(RAB+R′
A)
∫
𝜙
∗
s (x)H𝜙s(x − (RAB + R′

A))dr (6.61)

Now we want only the overlap integrals between nearest neighbors to show up
in the sums. For the RA translation, this means Ra = 0 and the RA =−aî. This then
leaves only

HAB =
∑

𝝉

eik⋅𝝉
𝛾(|𝝉|) (6.62)

where the 𝜏 now must refer to the distance between the basis atoms:
𝜏 = RAB = (a/2, a/2

√
3) and 𝜏 = RAB − aî = (−a/2, a/2

√
3). But now we must do

something pretty peculiar. Remember that k lies only in x: trans-polyacetylene is
1D. So when this kî is dotted into the position vectors, it simplifies the sum into
the components along x only:

HAB = (eika∕2 + e−ika∕2)𝛾(|𝝉|) (6.63)
HAB = 2 cos(ka∕2)𝛾(|𝝉|) (6.64)

We have, in fact, seen this compression of dimension before.
So we now have HAA, HBB, and HAB. We substitute into the equation above, and

we get the energy dispersion curve
E(k) = 𝜀p + 2𝛾(a) cos(ka) ± 2 cos(ka∕2)𝛾(|𝝉|) (6.65)

This is for our special form of trans-polyacetylene with all of the simplifying
assumptions we have made. Notice the role that the overlap integrals are playing
here in determining bandwidth. Plotting this out using a software package such
as Mathematica® is straightforward and left to the reader.

6.2.5.1 Hybridization
There is another important case to consider in tight binding. Up until now we
have taken the bands to have all of one type of character: s bands, p bands,
d bands, etc. Indeed, at the beginning of the section, we explicitly stated that



210 6 Electrons in Solids

we would take only atomic orbitals that were orthonormal to form our basis of
expansion into Bloch states. But in general, bands will contain contributions
from more than one type of orbital when they are available. An important
example is that of Si and C in the diamond form. In such cases the bands
associated with the lowest energies in the valence band and the highest energies
in the conduction bands come about due to a mixing of four orbitals: s, px,
py, and pz. The process is known as hybridization, and this particular form of
hybridization is known as sp3 hybridization. This is because a mixture of one s
and three p orbitals is used to form the band. Similarly, the in-plane bands of
graphene are actually sp2 hybridized. (The pz orbital makes up another band.)

So how do we expand our treatment to account for this? We begin by indexing
the different orbital types as well as the basis atoms. How does this work? Well,
consider Nb = 2, a two-atom basis. Further imagine each basis atom contributes
a s, px, py, and pz orbital. As above, we will clearly need to optimize the wavefunc-
tion, and this will give us a set of simultaneous equations to solve. In fact, it will
be 8 bands (2× 4) and an 8× 8 matrix eigenvalue problem we must solve if we
want the energies for each of the k points. To construct the Hamiltonian matrix
elements, we need to enumerate (label) all the orbitals that are at the party. So we
have s through pz on the A atom and the B atom.

Figure 6.32 is a schematic of a possible labeling scheme. The different individual
orbitals are added together to get the funny offset lobes at the right of the figure.
So, in our example atoms A and B look like these little tetrahedral: the jacks that
children play with. Indeed, many of the semiconductors do this such as Si. This
is an example of sp3 hybridization as is found in Si and diamond, but one can
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Figure 6.32 Atomic orbitals combine to form a new hybridized orbital that is
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easily imagine the sp2 hybridization of graphene where the hybridized lobes are
in plane and one pz orbital sits out of plane ready to form its own bands. We note
that for the sp3 case, the orbitals are not planar, but in fact sit at an angle below
the x–y plane. The lobes try to get as far apart as they can.

To build the Hamiltonian matrix, we simply run through the indices. Let’s take
i = 1 as the s orbital on atom A and j = 6 as the px orbital on atom B. Then,

Hij =
1
N

∑

RA

∑

RB

eik⋅(RA−RB)
∫
𝜙
∗
s (r − RA)H𝜙px

(r − RB)dr (6.66)

And we must now solve

|H − E(k)I| = 0 (6.67)

to get our dispersion curve.

6.2.5.2 Graphene: A Two-Dimensional Example
Tight binding relies on determining the atomic positions in the lattice, the orbitals
taking part in the bands, and the overlap of those orbitals. Once you have the
geometry and the orbitals, everything else seems to fall into place. It is all based
on the assumption that the electrons are fairly well localized.

Using the examples above, the tight binding bands of graphene are pretty easy
to get at. Of course, both the real space vectors and the k vectors lie in x and y.
So we have a two-dimensional problem to contend with.

First, the geometry: Previously we argued there that the honeycomb lattice of
graphene was actually trigonal with a two-atom basis. That is, the hexagonal
lattice of graphene can be thought of as being a superposition of two trigonal
carbon sublattices. There are two nonequivalent lattice sites that the electrons
might propagate through for any path through the crystal. To compute the
band structure using tight binding, we consider a hexagonal Brillouin zone.

Next, the orbitals: The orbitals that contribute to conduction in graphene are
associated with the pz orbitals of the carbon atoms at each hexagonal site as
in trans-polyacetylene. These pz orbitals can become delocalized over the lat-
tice to allow for conduction. There are also the hybridized sp2 orbitals in plane.
This was also true in our trans-polyacetylene example as well as the chemical
picture we presented for polymers above. You might say that the work of hold-
ing the structure together is done by the hybridized bands, while the pz’s are
responsible for conduction. Of course this is a bit simple and not altogether
accurate, but it is a good approximation.

We begin with examining the pz bands. These are the “bunched together states”
we showed in the chemical picture above. As we noted, in two dimensions, the
work is a little harder since we must designate kx and ky directions in reciprocal
space and work out the dispersion along these directions. The band structure as
derived by simple tight binding is given as

𝜀(k) = ±t

√

1 + 4cos2
kya
2
+ 4 cos

kya
2

cos
√

3kxa
2

(6.68)
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where t is the energy of hopping between sites (the overlap) and a is the lattice
parameter. We note that at six points, which represent the BZ edges, k = ±2𝜋/
a(0, 2/3), ±2𝜋/a(−1/

√
3, 1/3), ±2𝜋/a(1/

√
3, 1/3), 𝜀(k) = 0.

If we expand the expression above around any of these points, we get
𝜀(k) = ±ℏ|vf | (6.69)

vf =
√

3ta∕2ℏ (6.70)

Since there are two electrons per unit cell, these bands are filled right up to the
BZ boundaries. Thus we have used vf to represent the Fermi velocity, and these
are the “Fermi points” or sometimes called the “Dirac points.” We note that there
is no energy gap in the bands. So graphene is a gapless semiconductor!

What about the rest of the bands? The above is only for the pz orbitals, which is
kind of stand-alone. The other set of orbitals hybridize: s, px, and py. So while the
pz bands come from solving the two-atom basis matrix equation (a 2× 2 matrix),
to get two bands, the remaining hybridized orbitals give a 6× 6 matrix equation
for 6 bands. If we use the numerical values for the overlap integrals suggested
by [3], we get the bands shown in Figure 6.33.
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Figure 6.33 The tight binding bands of graphene. Dashed lines stand for the bands that are
derived from the hybridized orbitals. The solid lines are the pz orbital-derived bands. This
figure was taken from Professor Roy’s notes but can be easily reproduced using a software
package such as Mathematica and the literature values of the overlap integrals. Note that the
electrons occupy states as high as the light grey dashed line horizontal at −5 eV – a gapless
semiconductor. The set of three upper hybridized bands are completely unoccupied. The three
lower hybridized bands are completely occupied. It is also important to note the symmetry
points of the wavevector chosen for the two-dimensional representation of the bands.
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6.2.5.3 Carbon Nanotubes
Carbon nanotubes are a bit of a strange beast. On the one hand, it can be
thought of as the simple graphene we have just studied rolled up into a tube and
Born–von Karman boundary conditions applied to the circumference. So kaxis
and kcircumference are broken out as the relevant orthogonal directions in k space.
This would require that a half integral number of electron waves (wavefunctions
of electrons) on the tube’s surface must fit around the circumference if we are to
employ Born–von Karman boundary conditions. The part of the wavefunction
heading down the tube axis, however, looks like a plane wave.

However, kaxis and kcircumference do not sit collinear with the graphene sheet that
was used to make the nanotube. As we have already learned, the tube can be
constructed in such a way that the graphene lattice spirals (at a chiral angle) along
the axis of the tube. As we have conjectured, the Fermi surface of the graphene
looks like six points on the edge of a hexagon as seen in Figure 6.34. When we
overlay this hexagon of points with the tube axis, they do not align.

Figure 6.34 shows this hexagon tilted with respect to the axial direction of the
tube, and the amount of tilt is given by the chiral angle as shown. However, the
states associated with the circumference appear as straight lines along the direc-
tion of vector R. The points on the vertices of the hexagon (the Fermi surface) are
the only electrons allowed to participate in conduction of the object. The states
associated with the circumference are the only ones that are allowed so that the
wavefunction fits on the tube.

The angular position of the hexagon is determined by the angle that the
graphene is oriented relative to the rolling axis. When the hexagon lies at an
angle such that the hexagonal vertex intersects one of the circumference states,
the tube has electrons that are mobile, and it is a rather good conductor. However,
when the hexagon vertex misses the circumference state, the electrons at the
vertex energy must be given some energy to make a transition into a conducting
state. That is, the tube acts like a semiconductor. So, the nanotube can be either
a semiconductor or a metal, depending on its chiral angle. Moreover, the gap

kaxis

kcircumference

Armchair direction

Chiral angle Θ

“Boxlike”

circumference

states

Figure 6.34 The Fermi points of graphene sit at the points of the hexagon shown. However,
this hexagon is oriented with respect to the axis of the tube.
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depends on the angle and the diameter of the tube! Since we can know the
chiral angle in terms of (n,m), we can use a geometric argument to see that if
(n −m) is not divisible by 3, then the tube is a semiconductor; otherwise it is
a metal. Further, two-thirds of the possible nanotubes will be semiconductors,
and only one-third metals. Though we don’t show it here, it is clear that as the
tube diameter grows, the spacing between the circumference states gets more
narrow. Thus, the bandgap of a nanotube is Eg ∼ 1/DIA. Lastly, our example
above is clearly a semiconductor. This is, of course, only a little hand waving and
not a true tight binding argument. But perhaps you can see why people have
gained such a fascination for this beautifully symmetric system.

Is this system truly 1D? In what way can we tell? As mentioned earlier, the
electronic signature of truly 1D behavior is the occurrence of van Hove singu-
lar points in the electronic DOS. Do we, in fact, observe these? There is a way to
measure such DOS on nanoscale objects using scanning tunneling microscopy
and spectroscopy. In tunneling microscopy, the image is collected by scanning
the surface with an atomically sharp tunneling tip. The image contrast is gen-
erated through subtle variations in the tunneling current. When one wishes to
know the electronic structure at a specific place in the image, the tip is stopped
from scanning, feedback systems are disengaged, the voltage is ramped, and cur-
rent is collected. This tunneling spectrum is then differentiated to yield a dif-
ferential conductivity. The tunneling differential conductivity is normalized by a
term that varies as the tip height above the object, and the result of this normal-
ization is proportional to the density of electronic states in the area where the
spectrum was taken. In a stunning set of experiments, two sets of researchers,
one at Delft [4] and one at Harvard [5], correlated the electronic structure of
single-walled nanotubes with the atomic structure as determined using scanning
tunneling microscopy. Since the tunneling microscope can image at atomic res-
olution, the researchers were able to show that the set of van Hove singularities
predicted for a given set of (n,m) were exactly seen in tunneling spectra. These
are seen in Figure 6.35.
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multiwalled carbon nanotube. (b) The spectra have been plotted the most simple tight
binding prediction for this tube. Source: Courtesy of D. Tekleab, Clemson University.

In fact, van Hove singular points were identified in multiwalled carbon nan-
otubes earlier. These objects are simply increasingly larger diameter single-walled
nanotubes placed into a concentric configuration, giving more than one wall. The
interesting point here is that it appears as though there is little cross talk between
the shells. In other words, the outer shell of the multiwalled nanotube is a 1D
object as well, without regard for what is inside (Figure 6.36).

This leaves very little doubt that carbon nanotubes can reflect a 1D electronic
nature. How this 1D nature has manifest itself in thermal, optical, and trans-
port properties of both single-walled and multiwalled carbon nanotubes has been
intensely studied over the past 10 years [6]. Further, the role of symmetry break-
ing in such objects through defects [7], kinks [8], bends [9], and dopants [10] has
also been of significant interest to the scientific community. In each case, how-
ever, the 1D nature of the nanotube system must be modified with respect to
the extra-dimensional degree of freedom around the waist of the tube geometry.
This topological modification is especially clear for thermal transport, where the
vibrational degrees of freedom must include the so-called “twiston” or the twist-
ing of the tube about the axis as mentioned before [11]. In some sense one might
make the claim that a polymer system could exhibit a twisting of the atoms about
the axis, and this would be analogous to the twiston. This serves to demonstrate
the limited applicability of the concept of “1D” materials.

6.3 Are We Done Yet?

No. There are many approximations and variations on themes we have presented.
All are intended to provide better insight into localization and electronic orbital
choice. However, such refinements are best left for conversations among special-
ists in band structure calculations. The ansatz is that such refinements do not
change the basic meaning of this chapter: single particle states react to their inter-
action with the static lattice by forming bands.
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Nevertheless, there is a final and rather important point that should be made.
We have taken a perspective that the only interactions can be found in the forces
between the electrons and the ion cores of the lattice. This interaction is mediated
by the Coulomb potential represented by a bare ionic core, or some approximate
to it, and some electron screening placed right at this core’s location (this essen-
tially lowers its absolute value).

Electrons

interact with

each other

Electrons

interact with

the lattice

The cycle of life

The lattice

interacts with

itself

In reality, however, the electrons interact with a dynamic lattice as we saw from
Chapter 5 and with each other. These interactions “fill” the excitation spectrum
of the many-body state of the system. The lattice, of course, interacts with itself
(ion–ion). This allows us to have the dynamics of the lattice that yields phonons.
Electron–phonon and phonon–phonon interactions both seem fairly clear, but
what about electron–electron interactions?

There are, in fact, several different types of electron–electron interactions that
we have ignored; or if we didn’t, we certainly skipped over their significance. They
are the following:

1. The Coulombic interactions between the electrons themselves: Typically, we
might imagine this as the average electrostatic potential of the electrons and
the ions fixed in space, as they push and pull against each other. This simple
picture of the electromagnetic environment of the electron in a solid is referred
to as the Hartree approximation. And the Hartree potential is dependent on
the electron density.

2. Pauli exclusion: This disallows any two electrons to be in the same state. We
have seen this before in terms of the statistic of state filling.

3. Exchange interactions: These interactions are due to the Pauli principle. So if
two electrons have parallel spin, they cannot sit at the same place at the same
time. This gives rise to an effective repulsion, and the electrons interact not
only via Coulomb but also through their spins.
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4. Correlation interactions: This is also part of the Pauli principle. In this case
there is a correlation of motion between electrons with antiparallel spins due
to their Coulomb repulsion.

There are essentially a couple of ways to deal with these interactions. The first is
the Hartree–Fock formalism. In this approximation the Hartree potential is used
in the Hamiltonian, but exchange interactions are forced by insisting on antisym-
metric wavefunctions. This has the effect of lowering the total binding energy
of the atoms by keeping the parallel spins apart. Its weakness is that it ignores
correlated behavior between electrons with antiparallel spins.

The second major approach to this problem is density functional theory (DFT).
Since the exchange and correlation as well as the Hartree potential are all related
to the density of the electronic wavefunction, DFT treat density as a fundamental
quantity of the system. So, unlike Hartree–Fock that deals with the electronic
wavefunctions, DFT deals primarily with the electron density. The density in the
case is a functional – a function of a function – and it depends on space and time.
By doing this the degrees of freedom are reduced, and the calculation is much
faster than Hartree–Fock. Further, Hohenberg and Kohn showed that the density
of any system uniquely determines the ground state properties of that system (the
Hohenberg–Kohn theorem). So if we know the electron density functional, we
know the total ground state energy of our system.

By focusing on the electron density, it is possible to derive single particle equiv-
alents of the SE. We can then separate out the total energy of the system into
individual expressions for the different contributions, all of which will be written
in terms of density functionals. The terms will be:

1. Ion–electron potential energy
2. Ion–ion potential energy
3. Electron–electron potential energy
4. Kinetic energy
5. Exchange correlation energy

The derivations and mathematical details are beyond the scope of our discus-
sion here. However, there are some excellent texts on DFT available.

6.4 Summary

In this chapter we have suggested that the electronic structure of solids can be
described by single particle wavefunctions and states. The energies of these states
are collected together in bands, the shape and curvature of which are described by
the specifics of the potentials and the overlaps of the wavefunctions themselves.
In metals, a reasonable approximation to these single particle states is plane waves
bound in the box of the solid’s volume. But in semiconductor materials, the indi-
vidual lattice sites hold on to their electrons more tightly, and the single particle
state’s wavefunction becomes strongly modulated by the natural wavelengths of
the system’s lattice. As we have shown the tools used in physics and chemistry
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to describe this process are essentially the same, but the language can be quite
different. Low dimensions and nanoscale structures really require the scientist to
think in both ways.

Exploring Concepts

1 The Progression of Models: Consider the simple schematized presentation of
the models (Figure EC6.1) we have examined in this chapter.

(a) Go back through the text, and write down the dispersion curve E(k) for
the one-dimensional example of all three models.

(b) Explain the role of Pauli exclusion in the free-electron model.
(c) In the nearly free-electron model, what is physically happening near the

BZ edge that leads to the formation of an energy gap?
(d) In the tight binding model, we describe the model in both the physicist

language and the chemist language. Explain how these two pictures unite
to give an idea of the character of the conduction and valence bands
(Figure EC6.1).

2 Dirac Delta Potentials in One Dimension: Imagine the one-dimensional
lattice, with lattice spacing a, and each atomic potential represented by

The free-electron model

Drawing the Pictures of Our Models

e–

The nearly free-electron model

Tight binding theory

Electron waves must fit into the box with an even

number of 1/2 wavelengths. The metaphorical box is

the crystal with the facets, surfaces, and boundaries

limiting the motion of the electron, but not much

else

The electrons “feel” the perturbations of the ionic

cores but only very weakly. This modulates their

wavefunctions when proximal to the core in a way

related to the Fourier transform of the local

potential. In doing so, some k's and thus some E ’s

are forbidden, giving rise to a bandgap in electronic

energy states

Finally we come to tight binding where the electrons

are strongly localized to the cores. Electrons are

more imagined to “hop” from site to site as they

move through the lattice. The ability to “hop”

depends on orbital overlap between nearest

neighbors. These electrons are related to bonds

t

λ = h/p

λ = 2u/k±G–

Figure EC6.1 A brief reminder of the models we have examined.
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the potential: V (x) = aV 0 𝛿(x). We introduced this in the text as the Dirac
comb, but we didn’t provide any of the details. Following the example of
Kronig–Penney for the nearly free-electron model:

(a) Determine Egap, E(k) and the ground state wavefunction.
However, depending on the value of V 0, the energy of the electrons, etc.,
it can be that the tight binding approach is more appropriate. Now, we
are asking something rather funny because in the text we have associated
tight binding with the use of atomic orbitals (LCAO), and there are no
atomic orbitals to be found on delta function potentials. In fact this asso-
ciation isn’t quite rigorous, and the principles can be applied to a number
of wavefunction choices.

(b) Start with a wavefunction that looks like

𝜓 = Ae−k|x|

centered at each point in the lattice. With

E = −ℏ
2k2

2m
and

− ℏ
2

2m

(
𝜕𝜓

𝜕x
||||+
− 𝜕𝜓

𝜕x
||||−

)
+ 𝜓aV0 = 0

find a value for both A and k.
(c) In the tight binding approximation of ak≫ 1, show that E(k) is given by

E(k) = E0 −
𝛽 + 2𝛾 cos ka
1 + 2𝛼 cos ka

where

𝛼 =
∫

dx𝜓†(x)𝜓(x − a)

𝛾 = −aV0 ∫
dx𝜓†(x)𝜕(x − a)𝜓(x − a)

− aV0 ∫
dx𝜓†(x)𝜕(x + a)𝜓(x − a)

− aV0 ∫
dx𝜓†(x)𝜕(x ± 2a)𝜓(x − a)−

(d) Show that, under this approximation, this then reduces to

E(k) = E0 − 2𝛾coska

E(k) = E0 + 2V0ake−kacoska
(e) Find a general expression for the bandwidth W .
(f ) For this potential, show that the electron energy and wavenumber satisfy

the relation

cos ka = 𝜅

K
sin Ka + cos Ka

K2 = 2mE∕ℏ2

𝜅 = 𝛼V0
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(g) Calculate the energy gap between the bands or the case where the poten-
tials are weak:

V0 ≪ ℏ
2∕ma2

Compare this with the nearly free-electron approximation from above.
(h) Now calculate the bandwidth for the strong potential

V0 ≫ ℏ
2∕ma2

and compare with the result from the tight binding approximation.

3 The Square Lattice: In this problem we return to the nearly free-electron
model. This time we construct a square lattice with lattice constants: a. It
has a general potential of V (r), and the Fourier transform of that potential is
V (G): G is a reciprocal lattice vector. In this case the potential is relatively
weak, and so the exact functional form will not be as important. We will
write many of our answers in terms of the potential itself.

(a) First we want to investigate band structure around some special points in
the reciprocal lattice space, specifically, around the zone edges. First we
note that E(k) has a fourfold degeneracy at (𝜋/a, 𝜋/a). Only the G = (0,
2𝜋/a) and G = (2𝜋/a, 2𝜋/a) terms in V (G) are important for this nearly
free-electron case. Why?

(b) Now let’s set V (0, 2𝜋/a)=V 0 and V (2𝜋/a, 2𝜋/a)= 0. What does this corre-
spond to physically? Find the bandgap with these assignments. How does
that bandgap change when V (0, 2𝜋/a) = 0 and V (2𝜋/a, 2𝜋/a) = V 1?

(c) Sketch the bands along Γ −W and W −X.
(d) Now let’s add the electrons to these states. For one electron per lattice site,

sketch out the Fermi surface in (kx, ky). Determine if this is an insulator or
a metal.

(e) Repeat (d) for two electrons per lattice site.

4 Tight Binding (LCAO) of the CuO2 Bands in Superconductors: Let’s talk about
superconductors. In type II superconductors (the 2D ceramic kind), CuO2
planes play a pivotal role in electron–electron coupling as we will discuss later
in more detail. For now, let’s see if we can calculate the band structure of a 2D
structure of this compound using the tight binding approximation.
To begin, we will imagine CuO2 as a square lattice with three atoms per unit
cell (Figure EC6.2).
Interestingly the bonding between the orbitals that we have suggested for the
system is actually a mix between ionic and covalent characters.

(a) Following the discussion in the text, show that the tight binding equations
for this structure are

(ECu − E)Am,n + t(Rm,n +Um,n + Rm−1,n +Um,n−1) = 0
(E0 − E)Rm,n + t(Am+1,n + Am,n) = 0
(E0 − E)Um,n + t(Am,n + Am,n+1) = 0

Now if you are following along, you will know what each of these vari-
ables and symbols is, so we are not going to tell you other than Am,n is the



Exploring Concepts 221
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Copper hybridized

dsp2 orbitals

Oxygen px and py
orbitals

O

Figure EC6.2 Our model for the CuO2 sheet. Lattice constants are a, and hopping integral is t.
The interaction is actually mediated through the px/py orbitals of the oxygen and the
hybridized dsp2 orbitals of the copper.

amplitude of the wavefunction on the copper atoms located at (m,n). And
remember that (m,n) is the (m,n)th cell.

(b) Next insert expressions for the wavefunction amplitudes:

Am,n = A exp[ia(mkx + nky)]
Rm,n = R exp[ia(mkx + nky)]
Um,n = U exp[ia(mkx + nky)]

to get a secular equation with roots as we have done in our examples.
(c) Show that the two solutions or roots to these secular equations are

E±(kx, ky) =
(1

2

)
(ECu + E0)

± [(1∕4)(ECu − E0)2 + 4t2(cos2(kxa)∕2 + cos2(kya)∕2)]1∕2

(d) Now draw the first Brillouin zone and several lines of constant energy
so we can get some idea of what the band structure looks like in a
two-dimensional projection from the top. Make sure and include the line
along kx + ky = 𝜋/a. Based on what you have drawn, where would the
free-electron model be most applicable for this system (in terms of values
of kx and ky)?

(e) In the tight binding approximation, the bandwidth can be related to the
number of nearest neighbors in the system. Specifically, the SE can be writ-
ten in the form

(E0 − E)A0 + t
Z∑

n=1
An = 0

A0 is the amplitude on a given site, whereas An is the amplitude on the
neighboring sites. These are all related by simple phase factors in this
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approximation, as we just saw. So at some point in the BZ, all the phases
are equal to 1. This means the sum is maximized to give E = E0 +Zt.
There are also other places within the BZ that give the opposite behavior,
and the sum is −1, giving E = E0 −Zt. This gives the bandwidth (B) for
the tight binding approximation: B = 2Zt.
Notice here that not only are the nearest neighbors important (and the 2D
structure is therefore very important in giving very narrow bands), but t
also plays a role. Make an estimate of the value of t for this system and then
of the bandwidth altogether.
By the way, depending on the specific derivation and the traditions within
the field, we have used several symbols for this off-diagonal term we call t.
It is the overlap integral between neighboring lattice sites and is given as

t =
∫

dx𝜙∗(m)H𝜙(m + 1)

5 Shape of Fermi Surfaces:
(a) The problem above considers the case of the Fermi surface of the 2D

square lattice with one or two electrons per lattice site using the nearly
free-electron model. If you haven’t worked through 3(d) and 3(e), you
might want to for this problem. Now examine the hexagonal lattice
in the tight binding model. Figure EC6.3 sets up the lattice structure
schematically, and the bands are discussed briefly in the text when we
introduce graphene. First, write down the tight binding bands E(k) for
this system.

(b) For both cases, one and two electrons per lattice site, draw out the Fermi
surfaces, and state whether or not the configuration is a metal or semicon-
ductor.

a

a

The lattice parameter is a, the hopping integral is t

a

a

t t

(a) (b)

Figure EC6.3 The square (a) and hexagonal (b) lattices. What do their Fermi surfaces look like?
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Electrons in Solids Part II: Spatial Heterogeneity
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Source: Image courtesy ChaoChao Dun, Wake Forest University and Qike Jiang,
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We have, so far, discussed only homogeneous systems, perfectly repeating
potential landscapes with near-infinite extent. Where confinement has occurred,
we set up infinite potentials at the material’s boundaries so no electron could
escape beyond them. A natural point of curiosity then might be the case where
dissimilar materials come together forming an interface that allows for electrons
to pass or impurity atoms mix randomly in with those of a lattice. These
heterogeneous situations form the basis for most of solid-state electronics [1].

You might think from Chapter 6 that it could be pretty hard to be quantitative
about the electron single particle states in heterogeneous systems. For example,
at an interface, the “leaky” terminus to the electronic wavefunction might be
thought to add some localized modification to electronic density (ψ ×ψ). Addi-
tionally, charge might be thought to “pile up” around lattice sites where an impu-
rity has found itself and left uncompensated orbitals. Such local potentials could
be hard to guess. In fact, your trepidation would be well warranted. Calculations
of band structure near interfaces and defects are notoriously difficult, though they
can be done. What is surprising, however, is that a diagrammatic approach to esti-
mating what happens at an interface and with impurities is quite easy to develop

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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and has tremendous utility. But, as with everything else in our book, dimension
can make something simple into something nuanced.

7.1 Heterogeneity: Band-Level Diagrams
and the Contact

A discontinuous material composition represented by the step function discon-
tinuity is a heterogeneity that we call a contact. On one side of “x,” we have one
material, and on the other side we have another material. Electrons going from
one material into another must first exist in an allowed quantum state of mate-
rial 1 and then enter into an allowed quantum state of material 2. They have
some potential landscape to traverse to get from material 1 to material 2, and
initial-to-final state transitions must conserve energy. Having said this, it is clear
that the alignment of the energy levels on either side of the interface is an essential
part of understanding the redistribution of electrons among the states.

To see how we might use this idea, let’s start with metals: one metal forming
an interface with another metal. As shown in Figure 7.1 (right), we introduce the
band-level diagram. This one describes a simple metal. On the left of Figure 7.1,
the relationship between the metal’s band structure and band-level diagram can
be seen. Such diagrams are intended to provide a quick overview of the energy
levels in the bands. Thus, they do not show the bands as a function of k but rather
the electron energy levels (relative to some zero) as a function of x in the material.
Hence, the diagram can capture the spatial heterogeneity.

There are several important things labeled on this band-level diagram. The
chemical potential or Fermi level of the electrons is among them. As we have
pointed out before, these are very nearly, though not exactly, the same thing.
They are actually derived from different ways of looking at the solid, but their

Free electron bands of a metal Band-level diagram of a metal

ε(k) ε

εf~μ

–π/a π/a k x

Vacuum level

Unfilled states

Filled states

Φ is known as the work function, and it
is the distance from the chemical
potential μ and the vacuum level

Φ

Figure 7.1 Band diagrams in k compared with band-level diagrams in x. Since the band-level
diagram is plotted in x, we can see when electronic energy state changes as we move from
place to place in a heterogeneous system. But we have given up k information.
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equivalence at lower temperatures is frequently taken for granted by physicists.
The next of the important labels we find are the vacuum level of the system and
the work function. The vacuum level is lower limit of the energy of the continuum
of free particle states in empty space. So, we might imagine it to be the energy of
a stationary electron sufficiently removed from the solid so as to set it as a natural
zero of potential: electrons trapped within the solid have negative energies rela-
tive to vacuum, and electrons free to roam the universe have positive energies.
The work function (Φ) is related to this. It is specifically the energy difference at
which the electron first overcomes the bounds of the solid. Loosely speaking, the
work function is the amount of energy it takes to remove an electron from the
topmost occupied state of the system (the Fermi level) and place it at the bottom
of the “free” continuum.

These diagrams are particularly useful when it comes to dealing with (trying
to visualize) the results of some heterogeneity in the system. This can be seen in
the metal-to-metal contact shown in Figure 7.2. In the figure, we consider the
times both before, during, and after contact is established. At each point, the
electronic states in the two materials will follow a few rules. These are reflected
by the diagrams.

Vacuum level

Vacuum level

Vacuum level

Vacuum level

Apart: the vacuum levels align

As they are brought together:
electrons tunnel from the higher

Fermi level into the lower one,

filling unfilled states. This is a

system relaxation process

In contact: an equilibrium

establishes with an interface
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Figure 7.2 An interesting example is contact between Pt and Mo. From far apart to fully
formed interface, the process allows electrons to move between the two materials, leaving
one material with more electrons than it should have and one with fewer.
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Rule #1: “Contact” doesn’t always mean atomically well-defined interfaces
between materials. Nuances will be discussed a little later, but for now keep in
mind that the electrons can tunnel between materials even if the interface is not
perfect.

The final diagram in Figure 7.2 (shown bottom right) is the product of a series
of imagined events: initially (before contact) all materials share the same vacuum
level or zero of potential. Then, when one material begins to contact another:

Rule #2: The Fermi levels will align. In our example, this is because the electrons
in Mo have more energy to move than those of Pt. Pt provides those mobile Mo
electrons with a place to go: empty electronic states.

In moving from one side of the interface to the other, there is a lowering of the
system energy. [It is pretty straightforward to see this: simply calculate the internal
energy of the two systems apart using the tools of the last chapter, and see that it
is less than the internal energy of the new system with the new Fermi levels (the
range of integration changes). But remember you have to add in the electrostatic
energy of the separated charge for both cases.]

So, as electrons go rushing from one side of the interface to the other and the
Fermi level aligns, the vacuum levels above the solids misalign. Zero in potential
has not changed of course, but the vacuum level across the interface is now offset
by the addition of a voltage. That voltage is ΦPt −ΦMo in magnitude and comes
from a bilayer of charge that is located at the interface. The voltage is known as
the contact potential. The bilayer of charge is due to the local rearrangement of
charge at the interface: on one side, a positive charge relative to the surroundings
and on the other a negative. Of course, an extremely interesting situation occurs
when one of the solids is of nanoscale. In this case only so many charges can be
donated to the interface potential because there are only so many charges in the
finite structure. This leaves the nanomaterial side quite charged with tremendous
implications for catalytic reactivity.

Of course, in the instant of first contact, there is a lot of dynamics going on.
Fields are changing, electrons are rearranging themselves, etc. The precise way
in which this works can be interesting, but for now we are only focusing on the
final result. That means the system is in some sort of thermodynamic and static
equilibrium. Under these conditions, this contact potential is only accessible by
making contacts that will ultimately reverse themselves somewhere else in a cir-
cuit, as seen in Figure 7.3. Thus, it can never be used to drive a current. But that
doesn’t mean it can’t be measured. Scanning probe experiments are now certainly
sensitive enough to detect it.

Notice that we have not made any statements regarding the correspondence
of k values between the states of Mo and Pt that give and receive electrons. But,
remembering a little quantum mechanics here, we typically think: (i) electrons
will make a transition only into empty states as they move between the materials,
and (ii) the most probable transitions should be between states that are similar
in the direction of k. So, naturally, some mechanism must allow for the Δk as we
have discussed before with indirect bandgaps.
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0
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(Φ2 – Φ3) + (Φ3 – Φ1) + (Φ1 – Φ2) = 0

Φ1 Φ2

ACME
ammeter

Φ3

Figure 7.3 No matter how you set it up, closing the circuit means that you subtract out
whatever the contact potential was in the junction. HereΦ3 stands for the contact potential
with the ammeter. There is one subtlety however. If you are doing photoemission
measurements, you must take into account the work function differences between the sample
and the spectrometer. Note, however, this is for thermodynamic equilibrium, meaning that all
points of the circuit sit at the same temperature. If, for instance, the ammeter was at a very
different temperature than the junction between materials 1 and 2, a current certainly could
flow. This is the basis of thermocouple thermometry, and it is used all the time in laboratories.
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The following is a simple classification scheme for materials:
1. Insulators and semiconductors
2. Semimetals and metals
Naturally, there is a lot of nuance to material taxonomy that we will not address
here. But the distinguishing characteristic between our considerations is how
large of a bandgap the material has and what bands are filled. And this is true of
other monikers one might choose: inorganic, organic, ceramic, metal, etc. Large,
small, and no bandgap materials (insulators, semiconductors, and metals) are all
found in our most advanced communications and computational technologies.
So we should really explore how all of these materials form junctions/interfaces
with all the other forms of materials. Luckily, if we understand the semiconducting
case, everything else seems to fall into place easily. So let’s begin by providing a
little more definition and insight into materials with a bandgap (semiconductors).

7.2.1 Semiconductors: Bandgaps and Doping

We have already seen some band structure calculations performed for semicon-
ductors such as Si. And, while we have discussed their properties, it might be best
to remember a few of the more interesting points and add one or two new ones:
1. They have a bandgap or an energy gap between the HOMO and LUMO. The

higher energy unfilled band is called the conduction band, and the filled lower
energy band is called the valence band. There are other gaps between bands
in the electronic structure, but they are between filled and filled or empty and
empty bands, so they are of less interest.

2. Transitions across this bandgap are necessary to make the semiconductor con-
ductive. For small bandgap materials, this can occur with only thermal stim-
ulation, but for larger bandgap materials, something like the absorption of a
photon is needed.

3. Another way of getting electrons into the conduction band without resorting
to valence to conduction transitions is by adding electrons that should not have
been there. When this is done with impurities, it is known as doping, another
form of heterogeneity.

7.2.1.1 Band-Level Diagrams
The band-level diagram for semiconductors can be a little more challenging than
in a metal and allows for more variation as well. In Figure 7.4 we consider an
intrinsic (no impurities) semiconductor next to metals and insulators.

Now take a closer look at the semiconductor part of Figure 7.4. Figure 7.5 allows
us a bit more detailed examination of the components of this diagram. We present
the diagrams for three different situations.

7.2.1.2 Doping
As we see in Figure 7.5, the “Fermi level”1 moves as the semiconductor material
is doped. But what is this process? As we will see throughout this text, there are

1 Here we use the term Fermi level and chemical potential, 𝜇, to be interchangeable, because they
almost are. We will see shortly that when we are talking about semiconductors, the more precise
term is chemical potential for this level.
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Figure 7.4 A comparison of the band-level diagrams of metals, semiconductors, and
insulators. This diagram is shown with the Fermi levels aligned, so the vacuum levels appear
offset (don’t take this literally yet).
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Figure 7.5 The band-level diagrams for a semiconductor in its undoped and n/p-doped
states. Here the various quantities we will need to anticipate how junctions will behave have
been added. HereΦ still stands for the work function, and the 𝜒 represents the electron affinity
of the material.
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many ways to “dope” a material, but generally it can be said that it is the act of
adding electrons to, or subtracting electrons from, the existing band structure
of a system. We do this by very slightly altering the composition of the material.
Here “very slightly” means that the addition of the impurity atoms does not alter
the overall shape and function of the bands that have been formed by the exist-
ing lattice. So, we are NOT forming a new alloy or new molecular solid; we are
“sprinkling” very few foreign atoms in with our crystal’s atoms so that our crystal
doesn’t notice (other than to say “hey, I have too many or too few electrons!”). In
actual fact, there will be some additional scattering due to the dopant impurities
as well.

To see one way that this is done, let’s consider the quintessential semiconductor
example: Si. Think of the standard Si structure with the substitution of one of
the Si atoms in the lattice for some other atom: known as substitutional doping
or extrinsic doping. What kind of atom should we choose? Recall, as shown in
Figure 7.6, that Si will use its four outer shell electrons to form four covalent bonds
with neighboring atoms, thereby creating a stable filled outer shell configuration.
These are all sp3 hybrid bonds as we have discussed.

Let’s pluck one of those atoms out of its position and replace it with another
atom. For this example we will choose some atom that has five valence electrons.
Our choices are shown in column V of the periodic table in Figure 7.7. We do
have a couple of choices, but notice that not all atoms will fit neatly into the posi-
tion of the Si atom. It must have about the same atomic radius; otherwise strain
will occur and ultimately atomic migration. Let’s choose P (shown in green in

Si

Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

Valence band orbitals

Conduction band orbitals

Egap

εf

Figure 7.6 The stable bonding configuration of Si. The valence band of bonding orbitals is
filled completely. The conduction band of antibonding orbitals is completely empty. Shown
here, filled circles mean “filled,” and empty circles mean the orbital has no electron occupancy.
This is the intrinsic (pure) case, and the Fermi level is in the middle of the bandgap and is
shown for 0 K.
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Figure 7.7 The substitution of P into the Si lattice results in the creation of filled states within
the bandgap because P has five outer shell electrons and only four are needed for sharing with
the surrounding Si atoms. The state that the extra electron sits in is near the conduction band
edge, and some small amount of thermal stimulation allows it to ionize, thereby donating the
charge to the conduction band of the system.

Figure 7.7). Notice that the surrounding atoms only wish to share four of its elec-
trons, so one filled orbital that is associated with P is unused. Since this electron
is not bonded, then we will guess (using our molecular orbital argument from last
chapter) that its energy state lies in the bandgap between the bonding and anti-
bonding states of the other four electrons. This is the red line of the band-level
diagram in Figure 7.7. In our bond orbital picture, it shows up as an extra circle
surrounding the P atom. But notice that at zero temperature this circle is filled,
so the electron is bound to P.

What happens when there is a little thermal energy around? If there is enough,
then the P-bound extra electron can make a transition to the nearest free state. In
other words, the P-bound state becomes ionized by donating its electron to the
conduction band states of the Si. This type of dopant atom is known as a donor.
Since the bandgap of Si is roughly 1.12 eV and we know from electrostatic argu-
ments that the donor state must sit somewhere above the middle of the bandgap
and near the bottom of the conduction band edge, then it should be clear that it
doesn’t take very much thermal energy at all to make this state ionized. Another
way to say this is that if a volume of Si was loaded up with some number of such
substitutions, then at room temperature its conduction band would be populated
with free and mobile electrons. These extra electrons occupy Si antibonding states
and are quite mobile.

Because these additional electrons are packed onto the top of the Fermi sea of
electrons the solid already has, the “Fermi level” of the system must rise as shown
in Figure 7.7 as 𝜀f

′. When we do this type of doping to a semiconductor, it is said
to be n-type or n-doped. As we will discuss later, it also has electron majority
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Figure 7.8 P-type doping, or p-doping as it is known, places an atom with too few electrons
for the required local bonding of the lattice. In this case we have substituted a B into the lattice
site of Si. The result is acceptor states in the bandgap near the top of the valence band. These
states can “grab” electrons from the valence band and hold onto them, allowing the sea of
electrons in the previously filled valence band to move collectively. We refer to this collective
motion as a hole, and it behaves as if it is the antiparticle of the electron that it replaced. Thus
the semiconductor has become a p-type conductor. The Fermi level has moved down
correspondingly, 𝜀f

′.

carriers, meaning that its conductivity is primarily through free electrons in its
conduction band.

Naturally, there is another choice we could have made. Notice, in Figure 7.8, we
could choose an atom with only three shell electrons to replace one of the Si atoms
of the lattice. Of course the neighboring Si atoms would prefer four electrons in
that lattice site so they can have a filled shell. This will leave us with a deficit of
one electron.

The example we have chosen for Figure 7.8 is that of B. B doesn’t have quite
enough electrons for complete shells for all of its neighbors, and so there is an
additional trapping state formed in the bandgap. Electrons that are thermally
stimulated to transition into these localized B states are trapped there, leaving
behind a deficit of one electron each in the valence band. This was the completely
filled Si band, but now there are missing electrons into which other electrons
from the Fermi sea can transit. Since, with some of the Si electrons being trapped
around the acceptor B in nonmobile states, there are no longer enough electrons
to completely fill the Si valence band, a so-called hole is left behind, and it moves
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about as though it were a positive charge in the system. This is p-doping and we
have hole majority carriers.

What should we know about holes? Well.

Electron–hole symmetry

1. Dispersion relations are typically symmetrical with respect to the bottom and
the top of the energy bands. They are usually parabolic at either edge. This type
of symmetry is the so-called electron–hole symmetry and suggests symmetries
in dynamical quantities at the band edges.

2. Holes indicate missing electrons, and if a band is nearly filled, it is more con-
venient to look at those (few) states that are unoccupied than to look at all the
many occupied states. The collective motion of electrons is hole motion in a
semiconductor pretty much in the same way as empty seats “move” in a con-
cert hall from the expensive front rows to the cheap back rows: people move
forward, and the empty seats backward. More formally, holes are not simply a
way to look at collective electron behavior; they are instead better thought of
as positively charged quasiparticles.

3. These quasiparticles are responsible for the conductivity in p-doped
(“acceptor-doped” or “oxidized”) semiconductors just as excess electrons
carry the electrical current in n-doped (“donor-doped” or “reduced”)
semiconductors.

4. Holes have their own effective mass, they follow Pauli exclusion (they are
fermions), and they tend to move in opposite directions to electrons (they
have an opposite charge).

7.2.1.3 Carrier Concentrations in Intrinsic and Doped Semiconductors
The picture that we now have in our minds regarding semiconductors should
follow our band-level diagrams.
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Figure 7.9 The band-level diagram next to the Fermi distribution function showing how the
electrons will distribute themselves when the temperature is increased or the electron density
is increased/decreased. Note as a reminder that acceptor states “remove” electrons from the
system by binding them up in stationary states in the bandgap. This gives us holes that can
participate in conduction.

In Figure 7.9 we have placed the Fermi distribution against the band-level dia-
gram and aligned the energies appropriately. There are two entities that we must
know to determine how the electrons will fill available states: the temperature that
smears out the Fermi “S” curve, allowing for a higher energy tail to place some
electrons into the states that would be unfilled at 0 K, and the carrier (electron or
hole) density that moves the center of this “S” up or down.

When the system is at cold equilibrium (∼0 K), the electron distribution seems
rather obvious regardless of the gap states. This is the solid curve in Figure 7.9
(right, marked as T = 0 K); electrons of any semiconducting system will have
fallen into the lowest energy states allowed to them according to Pauli. From the
arguments we have made so far, this means the valence band is completely filled
with electrons and the conduction band is empty (the intrinsic case). If there are
any acceptor states in the midgap, then they are empty. If there are any donor
states in the midgap, they are filled, and the occupation of the valence band and
the conduction bands is exactly the same as in the intrinsic case because there is
no way for these impurity states to ionize and give carriers to their nearest bands.
If there happen to be acceptors and donors at the same time, a situation known
as compensation doping, then the filled donor states will empty out, thereby fill-
ing the acceptor states as would be expected by the Fermi distribution. This is
assuming that such a transition is allowed. But the band occupation will stay the
same as intrinsic.

When the temperature of the crystal is increased, this heat energy can be trans-
mitted to the electrons through interactions with the phonons. In the case of the
intrinsic semiconductor, to know how many electrons make it from the valence
band into the conduction band, we need to know the bandgap and the total tem-
perature (so we can know how much heat energy there is). If the bandgap of the
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crystal is large (Eg ≫ kBT), then a lot of energy is required for the transition of
an electron from the valence band to the conduction band. But if the bandgap
energy is more reasonable (say, some factor of kBT), then it is quite easy for elec-
trons to transit to the conduction band – leaving behind holes. So for reasonable
bandgaps, the semiconductor becomes more conductive as the temperature is
increased because the higher temperatures allow for more electron transitions.

At finite temperature (and in equilibrium), we can know the number of carriers
in each band through the law of mass action. Let nc be the number of electrons
in the conduction band per unit volume of the solid. pv is the number of holes
in the valence band per unit volume of the solid. gc(𝜀)/gv(𝜀) are the densities of
electronic states in the conduction band and valence band, respectively (the limits
will actually define which g(𝜀) we mean so later we leave these out). We then know

nc = ∫

∞

𝜀c

d𝜀
g(𝜀)

1 + e(𝜀−𝜇)∕kBT
(7.1)

pv = ∫

𝜀v

−∞
d𝜀g(𝜀)

(
1 − 1

1 + e(𝜀−𝜇)∕kBT

)
(7.2)

pv = ∫

𝜀v

−∞
d𝜀

g(𝜀)
1 + e(𝜀−𝜇)∕kBT

(7.3)

Here we have been a little more careful to write the electron affinity 𝜇 as
opposed to the Fermi level 𝜀f in the Fermi distribution

f (𝜀) = 1∕[1 + e(𝜀−𝜇)∕kBT ] (7.4)

We will come back to this point a little later. For now, it is best to use the 𝜇.
In the case of the intrinsic semiconductor, nc = pv. So we really only have to

figure out one of these (Figure 7.10).
Now let’s consider the case where we have n-type or p-type doping. Figure 7.11

shows these situations.
As we note above, the position of 𝜇 determines how the dopants will influence

the population density of the carriers. We can be a little more precise if we assume

𝜀c − 𝜇 ≫ kT (7.5a)

𝜇 − 𝜀v ≫ kT (7.5b)

where 𝜀c is the conduction band edge energy and 𝜀v is the valence band edge
energy. This is known as the nondegenerate approximation, and with it we can
make the following simplification:

1∕[1 + e(𝜀−𝜇)∕kBT ] ≈ e−(𝜀−𝜇)∕kBT (7.6a)

1∕[1 + e(𝜇−𝜀)∕kBT ] ≈ e−(𝜇−𝜀)∕kBT (7.6b)

which yields

nc = ∫

∞

𝜀c

d𝜀g(𝜀)e−(𝜀−𝜇)∕kBT = e−(𝜀c−𝜇)∕kBT
∫

∞

𝜀c

d𝜀g(𝜀)e−(𝜀−𝜀c)∕kBT (7.7)

pv = ∫

𝜀v

−∞
d𝜀g(𝜀)e−(𝜇−𝜀)∕kBT = e−(𝜇−𝜀v)∕kBT

∫

𝜀v

−∞
d𝜀g(𝜀)e−(𝜀v−𝜀)∕kBT (7.8)
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Figure 7.10 The nonzero temperature Fermi distribution spreads the occupation of electrons
across the bandgap (assuming high enough temperature). Thus, the electrons in the valence
band interact with phonons that give them enough energy to span the gap. Remember, f (𝜀) is
telling us the probability of finding a filled state, or 1− f (𝜀) an unfilled state at any given
energy 𝜀. At equilibrium electrons are making transitions back and forth at a given rate,
leading to a steady population in the bands. At the band edge there is a sharp cutoff of the n/p
because no states exist there. If the bandgap were really large as in the case of an insulator,
then the temperature needed to raise an electron to the conduction band would approach the
melting temperature of the material. We note here that we have assumed electron–hole
symmetry, that is, the bands “look” essentially the same right at the energy gap’s edge. Thus
the distribution in energy of the n/p is mirrored.

This gives us

nc = Nce−(𝜀c−𝜇)∕kBT (7.9)

pv = Nve−(𝜇−𝜀v)∕kBT (7.10)

so, we still can’t get at the actual values without the value of𝜇. But we can combine
these to get the law of mass action

nc pv = NcNve−(𝜀c−𝜀v)∕kBT = NcNve−Eg∕kBT (7.11)

where

Nc ≡ ∫

∞

𝜀c

d𝜀g(𝜀)e−(𝜀−𝜀c)∕kBT (7.12)
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Figure 7.11 On the left, donor gap states (not shown) add electrons to the distribution,
thereby moving the 𝜇 toward the right. On the right, acceptor gap states remove electrons,
thereby moving the 𝜇 to the left. The donor and acceptor states thus only influence the n/p by
where they place 𝜇.

Nv ≡ ∫

𝜀v

−∞
d𝜀g(𝜀)e−

𝜀v−𝜀
kBT (7.13)

This is a quite general finding and applies to the use of this approximation in
doped and undoped semiconductors.

At around room temperatures, we note that the usual purpose of doping a
semiconductor is to place the bandgap states rather near the conduction band
or valence band edges. And therefore the donor or acceptor states are likely to
be all ionized, leaving the density of carriers in the band equal to the total den-
sity of donor–acceptor states plus the carriers that have transitioned across the
gap: ni. So, it will simply look like ntotal = ni + n/p. Of course, if we do not make
this assumption and instead consider the idea that the donor–acceptor states are
only partially ionized (say, for deep donor or acceptor states), it is quite easy to
imagine that the donor–acceptor states will contribute to the conduction/valence
band using the thermally weighted averages as above.

7.2.1.4 The Fermi Level vs. the Chemical Potential
When the temperature of the solid is NOT zero, the electrons at the Fermi level
spread out. Let’s just remind ourselves of this fact. Shown in Figure 7.12 is the
edge of the Fermi distribution as a function of temperature. As the temperature
goes up, that straight Fermi cutoff begins to “smear” and spread. Notice the spread
is “S” shape, and for even fairly high temperatures, it is distributed evenly about
the point f (𝜀) = 1/2. 𝜀f is chosen as the energy at which the sharp cutoff occurs,
between filled states and unfilled states at 0 K. It is independent of T . 𝜇 is another
matter. It is uniquely defined by the grand canonical ensemble (visit your nearest
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Figure 7.12 The Fermi distribution spreads out as the temperature increases. This means that
higher energy electronic states are occupied.

Statistical Mechanics Store) for all finite systems and represents the change in
Helmholtz free energy (U-TS) of the system with the addition of a single electron
[2]. We notice that𝜇 typically (at reasonable temperatures) occurs where the elec-
trons in that “S” curve are exactly balanced against the holes: the inflection point
of the “S” curve. This is 𝜇 ∼ dF/dN , where F is the Helmholtz energy and N the
number of electrons according to Baierlein [3]. This value IS temperature depen-
dent of course. However, for temperatures under about 200 ∘C, the two are almost
the same value, so it hardly makes any difference, and we can approximate 𝜇 ∼ 𝜀f.
But for finite temperature semiconductors, we really should be saying “chemical
potential” instead of “Fermi level.”

7.2.1.5 Spectroscopy of the Dopant Levels
In the design and development of technologies based upon doped semicon-

ductors, it is necessary to characterize the dopant states, that is, to know how
deep in the gap they are and their number. There are numerous ways that
physicists have used to do this from temperature-dependent deep-level transient
spectroscopy (DLTS) to Hall measurements. These are mostly based in transport
measurements.

However, a common method to examine dopants in semiconductor crystals is
optical spectroscopy. The experiment is really rather simple. First one cools the
sample to the point where the dopant levels are not ionized using a cryostat with
an optical window. Then you illuminate the sample: scanning through the differ-
ent wavelengths of light and measuring the reflected (or transmitted) light to see
what wavelengths have been absorbed. The caveat is that you must calibrate this
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Figure 7.13 Shown is the absorption spectrum for n/p-doped Si. Taken from Ref. [5].

against an undoped sample that is otherwise identical so that you know the effects
of absorption in the window and by the surface states, assuming there are any.
The result for Si is shown in Figure 7.9. Caution must be used when employing
such techniques however. Ionization of the dopant levels is a resonant scattering
effect, and it is embedded with scattering among the nearly continuous states of
the band as well as phonon scattering. So, the two different kinds of scattering
have energies similar to each other and are in proximity to each other. This can
lead to a particular kind of interference known as Fano resonances, giving sharp
features in the spectra [4].

In our illustration of Figure 7.13 [6], we have shown the absorption coefficient
(𝛼) as a function of the doping levels (cm−3) for boron (B) and phosphorous (P):
p- and n-type dopants, respectively. Recall that the absorption coefficient is the
exponential factor in Beer’s law: I ∼ I0 exp(−𝛼x) where x is distance into the sam-
ple. This is a good measure of where the strong absorption is occurring. Notice
that we cut off the scan for photon energies below about 0.7 eV where the energy
states of the dopants are expected to sit. This is due to a limitation of the experi-
ment. However, for the energies shown, it is clear that the dopant levels are being
ionized by the incoming photons and end up in the conduction (electrons) and
valence (holes) bands.

Notice that for a macroscopic crystal-like Si, the dopant is forced into the spe-
cific bonding configuration that the 3D lattice of Si makes for it. That is, the
dopant atom must “think” it is Si in a way. But this is not true for nanosystems in
which there are simply not enough surrounding atoms to force the dopant atom
into a template. Instead, in these cases, the dopant can form complexes that leave
states anywhere within the bandgap of the object! Thus, an atom that one thought
would surely result in p-doping actually yields n-doping. While this can happen
in bulk semiconductors as well, it has been a particularly tricky detail in nanoma-
terials as with the case of carbon nanotubes.
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Cats have always played a role in scientific illustration such as Schrödinger’s cat. But 
there has been a persistent story told at North Carolina State University for years

The Chemist’s Cat

and their gratings must be carefully balanced and synchronized. Every so often this

chemist would find that transient fringes and features would begin to occur in his

spectra, making interpretation impossible. When this happened he would go home

and get his cat, return to the lab, and place the cat into one end of the

monochromator. The cat would then emerge from the other end covered in spider

webs, and the spectra would return to normal! 

about a rather famous chemist who

did quite a lot of work with high

resolution optical spectroscopy of

molecules. Such work required that

monochromators be very long 

7.2.1.6 Carbon Does Not “Dope” Like Si
In Si, extrinsic doping is typically treated as though the crystal sets a template for
the insertion of the foreign dopant atom, and the mismatch in the local electronic
bonding results in an extra charge (positive or negative as the case may be). This
is the archetype and the point at which many discussions leave doping altogether.
GaAs and InP both actually follow Si closely. However, there is another class of
semiconductors to consider, and they are based on materials like carbon. What
happens when it is energetically favorable for the lattice to change its local sym-
metry as opposed to accepting an impurity atom with a bond dangling in space?
Moreover, what happens when the thing we are trying to dope is nanoscale? Such
considerations are of particular importance to the field of organic electronics.
From diamond doping, to carbon nanotube doping, and to the doping of a conju-
gated polymer, the rules here can be a bit different from Si and quite unexpected
at first.

In the case of diamond (3D carbon), we might expect that if we choose N, we
would add an electron near the band edge, as we did with Si and P, to the sys-
tem since it is one column over and on the same row as carbon. In fact, this
doesn’t happen. The donor state introduced is far too “deep” in the bandgap to
help us much in increasing the conductivity of this material. This is, in fact, due
to the preferential formation of a distortion wherein the N prefers to form a lone
pair of electrons on the N, leaving one of its carbon neighbors with a dangling
bond [6]. This means that the extra electron will be localized on a carbon atom
somewhere as opposed to the impurity atom. One reason for this to occur can
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Figure 7.14 Here the nearest neighbor (NN) bond lengths have been calculated. The ratio of
nearest neighbor in diamond (NNc) to these NN distances is plotted as the relative covalent
radii (R) for species in diamond (normalized to the radii of carbon Rc). Atoms about the same
size as carbon (when in diamond) show up as a 1 on the abscissa. On the ordinate is a number
that tells you how close the atom wants to be to its nearest neighbors. Again if it matches
carbon, then it is 1. So even though N is a little smaller than its C counterparts, it prefers to be
further away when it forms bonds.

be seen in Figure 7.14 taken from Ref. [6]. The range of impurities that will nicely
fit into the lattice is limited. Even for species with a smaller covalent radius than
carbon, the surrounding lattice can be pushed outward to accommodate bond-
ing angles and lengths. So, as the deformation in the vicinity of the impurity
increases, so too does the energy required to form the defect. This means, for
the most part, that the equilibrium solubility of dopants in bulk diamond is often
very low.

Carbon nanotubes are really no different. The addition of N into the lattice of
a single-walled carbon nanotube (SWNT) can be nonobvious. There have been
numerous models proposed for the incorporation of N into the SWNT lattice,
and one of them is shown in Figure 7.15.

Of course nanotubes, particularly single-walled nanotubes consisting only of
a single sheet of atoms, can be “doped” in many ways. Chemical attachment of
electron-donating or electron-withdrawing groups, adsorption of species such as
oxygen on the outer wall, and introduction of species within the tube itself have
all been shown to lead to doping or the exchange of charge. Indeed, this would
suggest that at the molecular level there is some ambiguity between atomic-scale
contacts and contact doping. So if we lay a nanotube onto a gold surface and find
that it has more electrons now in its conduction band (say, through tunneling
spectroscopy), do we say that a low-dimensional contact has been formed like
that of the above examples in metals, or do we say that the nanotube has been
doped by the gold? As we will see in the next chapters, for nanostructures we can
really treat these two things as the same [8].
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Figure 7.15 This is one of the many models
proposed for N incorporation into the SWNT
lattice. Such models range from single, isolated N
that bonds out of plane into the lattice to these
pyridine-like rings. The final result depends on
growth of the nanotube and the nitrogen
environment used to provide the doping [7].

7.2.2 Junctions with Semiconductors

Now, we move on to consider the combining of the doping inhomogeneity
with the inhomogeneity of contacts. Junctions, interfaces, and boundaries
between materials of different electrical characteristics can be used to
form the basis of modern electronic components. Metal–semiconductor,
metal–insulator–semiconductor, and p-doped to n-doped semiconductors (p/n
junctions) are all technologically important junctions, forming laser diodes to
megabyte chips [9]. Naturally, this is a study area unto itself, and it supports a
massive worldwide industrial base. However, using our simple introductions and
definitions so far, we can lay down some ground rules of dealing with “electronic”
junctions.

We have already established our classification scheme using band-level dia-
grams as seen in Figure 7.16.

To make this useful, we need to attach numbers to the levels in different solids.
So we might think of measuring energies relative to the fundamental energy it
takes to remove an electron from the solid’s surface: the work function (usually
given the symbol ϕ◽ or W ). Then the energies of the bands and the Fermi level
can be measured relative to a vacuum-level point as seen in Figure 7.17. This
means calling the energy of the “just free” electron the “zero point” on the energy
scale. So, for a metal the work function energy is quite simple – it is the energy
from the Fermi level (highest occupied orbital) to the vacuum level. This would be
the amount of energy it takes to remove the electron. For the room temperature
semiconductor, this is a little less obvious: it is the energy to the vacuum level from
the chemical potential (loosely; the Fermi level). This is shown in Figure 7.17 on
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Figure 7.16 Classification of solids according to their conduction properties. The Fermi level
or chemical potential is the highest energy level of the electrons, and the different systems are
shown normalized to this level.

the left-hand side. 𝜒e is referred to as the electron affinity, and it is the energy
from the vacuum level to the bottom of the conduction band. This is actually a
convenient scale choice because it does allow one to compare materials.

To form a junction, the surfaces of two atomically clean half spaces are brought
together (or as in reality, a film of one material is grown on a single crystal surface
of another). Electronically, the exact response of the combined systems depends
sensitively on the details of the surfaces and materials involved. There are many
possibilities for order and interphase formation, all of which will influence the
electronics of the interface. However, we can form a general set of expectations.
As shown in Figure 7.18, as two materials approach each other, nothing hap-
pens to first order. Casmir forces and other effects are small. When electrons
are allowed to transfer from one material to another, contact has been achieved.
Charge flows to fill the lowest possible states on either side of the junction. But
how does it choose to do this?

Rule #1: Metal–semiconductor junctions follow the Schottky–Mott rule. Origi-
nally this rule was used to estimate the potential difference (or barrier height) that
would occur between a metal and semiconductor in terms of the work function
of the metal and the electron affinity of the semiconductor:Φbarrier =𝜑metal−𝜒 semi.
This does work quantitatively sometimes, but other times it does not because, as
Bardeen pointed out, it doesn’t account for trapping states within the bandgap of
the semiconductor that might occur due to defects and reconstructions of that
surface. It does however give a general sense of how the bands will bend at the
interface.
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Figure 7.18 The formation of a simple semiconductor–metal interface and its electrostatic
barrier. Such barriers are sometimes called “Schottky barriers,” and they come about as the
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In the metal–semiconductor junction, the system will now share one Fermi
level as seen in Figure 7.18. Locally, a field is formed due to the unbalanced charge
on each side of the boundary necessary to equilibrate the Fermi level. This field
holds the charge in place. The states of the energy bands adjust their position in
the local field, usually referred to as band bending. In some cases this can form
a barrier to current flow in one direction, but not the other – rectification. The
height of the energy barrier, giving rise to the rectification, is roughly 𝜑2 −𝜒1,
where the 𝜑 is the work function of material 2 and 𝜒 the electron affinity of 1.
This scenario, or something similar, holds whether the system is low dimensional
or not. Now you can see why we worried about contacts “doping” the system in
our discussion above (Figure 7.19).

There are many caveats and nuances to the process of Schottky barrier for-
mation that we have not discussed here, for instance, Fermi level pinning where
charge becomes trapped at the interface in bandgap states that are due to imper-
fections or impurities. However, the “flavor” is captured here. The barrier is due
to compensation charge at the interface. The field of this charge extends into the
semiconductor, creating a zone of depleted carriers: the depletion zone. If an elec-
tric field is placed across the structure, opposing this field, then current will not
flow until it has exceeded this barrier field. However, the current flows freely if
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Figure 7.19 If an n-doped semiconductor is used, the amount of band bending is even
greater, and quite a large potential barrier,ΦB, can be accomplished. Here we have used the
Schottky–Mott rule, so this represents an ideal case. A p-doped semiconductor can bend the
bands in the opposite direction.
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the applied field is in the direction of the V bi. This non-ohmic nonlinearity (rec-
tification) is called a diode, and this is an example of a Schottky diode.

Of course the bands can bend dynamically with a variable applied voltage as
well, making the barrier appear larger: dynamic band bending. It should be clear
that the type, mobility, and number of available charges in the solids will have
a large impact on the kind of barrier formed at the interface. We return to this
point when we discuss conducting polymers in more detail.

Rule #2: Semiconductor–semiconductor heterojunctions follow the Anderson
rule. In this case we start with two pieces of the same material – say, Si – one
that has been doped n-type and the other that has been doped p-type. So the
bandgaps Eg1 = Eg2, but the Fermi levels EF1/2 are different.

In the diagram of Figure 7.20, we identify the variables that you need to know
to “guess” what will happen when current flows through this junction of mate-
rials. First notice that the interface doesn’t bend at a single position as in the
metal–semiconductor example. Here energy levels on both sides of the junction

Vacuum level

Depletion zone

EC1

Ev1

EF2

EV2

Eg1

Eg1

Eg2

Eg2

EC2

EF2

EV2

EC2

Before contact

After contact

EF1

EC1

Ev1

EF1

χ1 ϕ1
χ2 ϕ2

χ1 ϕ1

χ2 ϕ2

Vacuum level

Figure 7.20 A band diagram drawing of the standard p/n junction as is used to form diodes.
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bend smoothly away from the position of the physical boundary. This is because
the field required to align the Fermi levels penetrates slightly into both materials.
It is due to the exchange of charge locally.

7.3 Other Types of Heterogeneity

Heterogeneity can actually take many forms in solids, and we have seen two
of them. But as technologies progress, and the use of organics in electronics
increases, the types of heterogeneities we encounter also change. Perhaps among
the most interesting of these are composite structures. Organically based elec-
tronic/photonic composites have been studied for some time now and are just
finding their niche in technology, but they represent a fascinating field of physics.
The idea is quite simple as shown in Figure 7.21.

At first glance this doesn’t seem a soluble problem, and perhaps it might be
thought to hold less basic instruction of physical principles for the scientist. In
actual fact, however, this problem of embedded systems in low dimensionality
actually poses some rather deep questions of how space can be connected in a
conducting system.

Important starting points for identifying variables in this problem are the fol-
lowing (let’s call them the basic rules of the game):

1. The interphase can interact with the host and vice versa, meaning charge can
transfer and cause localized doping, and an antenna-like nanophase can lend

The heterogeneous conductor

A volume of

polymer (like the

conjugated systems: PFO,

PPV, PVK, etc.)

A filler of a nanophase

that is interconnected

and strongly interacts

electromagnetic field

with the

(maybe nanotubes or

Au nanorods)

optoelectronically active

Figure 7.21 The heterogeneous conductor is typically thought of in the case of an organic such
as a polymer containing a minor conducting phase such as carbon nanotubes. However, there
exist liquid crystal systems that also fit this pattern. So the concept is quite general.
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oscillator strength to the surrounding matrix modifying its absorption (we will
discuss this in more detail later).

2. The fractal dimension of the interphase collection depends on the length of
the nanowires together with the loading and relative angle with respect to
each other. Controlling this dimension has long been sought by scientists and
engineers, who have applied chemical assembly techniques to chaotic mixing.

3. The fractal dimension, along with the oscillator strength of the nanowires, and
the conductivity of the host will also determine the interaction of the collective
with incoming electromagnetic radiation.

4. The transfer of charge through the network of the interphase depends on the
quantum mechanical ability to tunnel, and this is dominated (as we shall see in
our chapter on transport) by two different mechanisms: fluctuation-assisted
tunneling (FAT) and variable range hopping (VRH). But this in turn depends
on an element of nonlocality (since the buildup of charge in one place on the
network can affect the tunneling potentials at another) as well as the specific
arrangement of the nanoparticles (a very local element). We see the second
argument in Figure 7.22.

Clearly there can be rather a lot of interesting physics in these so-called
matrix composite or nanocomposite systems. There exists an odd “symbiosis”

Cross-junction Parallel-junction

Image is looking down from the top

Φ1

Φ1

Φ2

Φ2

Figure 7.22 Two different types of nanotubes are contacted. However, the contact is
geometrically different in the two cases as shown. One nanotube contact is crosswise, and the
other is parallel. For different chiralities we naturally expect different work functions and some
contact potential. However, tunneling matrix elements will also be sensitive to the k values of
the states that are transferring the charge. This then also modifies the tunneling probability at
every junction within the network.
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of dimension, localized properties of modification, and “rule of mixtures”
that creates materials characteristics quite different from constituent phases.
Moreover, this suggests to many in the field that such systems be seen as a
class of materials by themselves. We will return to matrix composites when
we introduce transport properties in conjugated systems. For now, however,
we want only to introduce the extreme level of heterogeneity that can occur in
dimensionally engineered materials.

7.4 Summary

We have presented a basic glimpse of heterogeneity in the materials we studied in
the last chapter. This has included contacts between different types of materials
as well as (electronic) doping that modifies band filling. A simple band-level dia-
gram approach toward predicting the behavior of homogeneity has been intro-
duced and used to understand how technologically important systems such as
the metal–semiconductor interfaces behave. Finally, what we thought we had just
learned, just when we were getting comfortable, such processes in heterogeneity
are challenged with the introduction of carbon systems and dimensionality.

Exploring Concepts

1 Silicon and carbon: Let’s explore the differences and similarities in 3D Si and
C (diamond) when it comes to doping. Remember both have this diamond
structure, but there is a big difference in the “willingness to accept different
bonding angles” of the two.

(a) From what you can find in the literature, what are the most common
substitutional dopants found in each system? Describe their bonding posi-
tions and the relative position of the electronic state in the bandgap. So, in
these cases we are specifically examining the substitution of one atom for
another, such as Si with P, while leaving the rest of the lattice unaltered.

(b) Just as these substitutions can be carried out without significant alter-
ations to the lattice, there are cases where local alterations do occur. This
can mean that the substitution of a single atom, so B into the C diamond
structure, may have consequences beyond just an unfilled orbital: different
hybridizations between the adjacent atoms. This results in doping levels
that are unexpected high or low. Describe and explain which of the two
systems (Si/C) you think might be more susceptible to this.

(c) Again, back to the library. Find a few examples of (b) for each system. Draw
them out and explain the what and where of the local bonding. For each
example, what happens to the doping state in the bandgap?

(d) Finally, let’s compare and contrast the p/n junction in Si and C (diamond).
Of course the bandgaps are quite different. But, given the common dopants
in Si and in C (now being studied for technology applications, we will let
you look this up), estimate the barrier heights at the p/n junctions and the
Schottky barriers for silver contacts to the p- or n-type material.
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Figure EC7.1 The band diagram for the
semiconductor surface. Notice that due to
reconstruction and termination of atomic
order, band bending can occur here. There
is a subtle difference between the electron
affinity and the work function as shown
here. The level of doping will determine
what is actually measured using X-ray
photoelectron spectroscopy.

Now, for this exercise, we realize we have asked the reader to search through
literature and use numbers found there to get the answers. And, of course, lit-
erature will have different numbers reported from different research groups.
So, it is important to note how the numbers and how your estimate are gen-
erated and the level of confidence you may have in that numbers based on
other measurements in the literature of these barrier heights.

2 Negative electron affinity materials: In this section, we learned about the elec-
tron affinity, essentially the work function for the semiconductor.
Specifically, for the semiconductor–vacuum interface, the electron affinity,
EEA or 𝜒 , is defined as the energy obtained by moving an electron from the
vacuum just outside the semiconductor to the bottom of the conduction band
just inside the semiconductor as seen in Figure EC7.1:
So, for intrinsic semiconductors near-zero temperature, this is straightfor-
ward. Added electrons go to the bottom of the conduction band to which
they have been added. For intrinsic and lightly doped semiconductors, the
work function may change with the doping level, but ideally the electron affin-
ity doesn’t since the electron is going to the bottom of the conduction band
anyway. But at higher temperatures and heavily doped semiconductors, an
added electron will instead go to the Fermi level on average, which now may
be well into the conduction band, so the situation is more complicated.
Like the work function, the electron affinity depends on the surface termi-
nation (crystal face, surface chemistry, etc.) and is strictly a surface property.
And, curiously, in some circumstances, the electron affinity may become neg-
ative. As it happens, diamond (111) surfaces have an electron affinity very
near the vacuum level. If an alkali metal is added to the surface, the electron
affinity of the surface becomes negative!

(a) Look up the current best values for the electron affinity of the diamond
(111) surface. What alkali metals would bring this surface up to an negative
electron affinity state (NEA)? Give estimate numbers.

(b) Draw the band diagram for this system. What is the physical meaning?

3 Modulation doping: Conductivity in a material requires charge carrier num-
bers and charge carrier mobility. Carrier mobility, as we have already seen,
is a function of the bandwidths and band shapes of the materials (as well as
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scattering if there is any). As for carrier number, we can add charge carriers
to the conduction band, as has been explored in this chapter, through doping.
There is a slight problem though. The addition of large numbers of additional
electrons into the conduction band of a material requires that the lattice be
riddled with additional dopant atoms. These atoms are “foreign” to the lat-
tice and introduce localized potentials that can extend for some numbers of
lattice parameters in length away from the dopant site. Consequently, they
introduce significant scattering in the system, lowering the carrier mobility.
We have lower mobility the higher in dopant levels we go and overall con-
ductivity begins to roll off.
In 1977 at Bell Labs, Horst Störmer, Ray Dingle, and Arthur Gossard thought
they had an answer to this. They introduced the idea of modulation doping.
This clever little technique simply separates the free charge carriers in their
conduction channel from the location of the donors. Of course it presumes
systems in which the “added” carrier can easily and quickly migrate to regions
of interest, quite distant from the atomic donor that placed it into the con-
duction band in the first place. Now this does eliminate scattering from the
donors, and semiconductors that are modulation doped can have very high
carrier mobilities and high carrier numbers simultaneously. In fact Störmer
and Dan Tsui used a modulation-doped semiconductor to discover the frac-
tional quantum Hall effect that same year.
In this problem we are going to take a look at such experiments to understand
the setup. This will help us understand modulation doping.

(a) To begin, three layers are grown. The first two are GaAs and Alx Ga1−x As
where the Al content is below 40%. The third layer is a contact of metal. The
lattice constants of the semiconducting two layers are less than 1% differ-
ent, so the lattice structure continues across the interface with few defects
(epitaxial). However, the bandgap of the AlGaAs is direct and larger than
that of the GaAs. This results in the band offsets shown in Figure EC7.2.
For the common values given in literature in undoped GaAs/AlGaAs (we

Figure EC7.2 Implementing the
modulation doping mechanism in real
life is much more complicated than it
seems. This is how the Bell Labs team
did it. It involves three layers: a metal
layer, an n-doped AlGaAs layer, and a
layer of non-doped GaAs. Notice in the
very thin AlGaAs layer, the bands are
never really “flat.” They are bent due to
the local fields that are established by
the exchange of interface charge on
either side. This particular structure
became the standard for the study of
two-dimensional electron gases
(2DEGs).
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already gave you one), give a rough estimate of the band offset and expected
barrier height for the undoped system.

(b) Now, consider the case where the AlGaAs is doped heavily with shallow
(near the conduction band edge) donor states. Let’s say that we are going
to run our experiment at near 1 K; how shallow do we want these states
to be if they are to contribute fully to the conduction properties of the
system? What happens to the Fermi level in the AlGaAs for this level of
doping? What about the Fermi level for the GaAs, where is it? How does
this happen?

(c) Notice that in our Figure EC7.2 diagram, the bands bend with a simple
curve. We see this curve upward both at the metal/AlGaAs interface
and the GaAs interface; explain. We have marked a region in the GaAs
near the interface as a 2D electron gas. Why are there electrons pooled
there? Assuming there is little interaction with the interface itself by these
electrons, why would an electron gas be a good approximation for their
behavior?

(d) These electrons have been added to the GaAs system from the AlGaAs
system, but they are placed in a position where little scattering can take
place due to the dopants themselves. This is the classical definition of mod-
ulation doping. Now let’s use some very simple electrostatics: E = n−/𝜀
where n− is a variable and is defined as the carrier density in the 2D gas,
𝜀 the dielectric, and E the field (remember that above is plotted in eV) to
write down an expression for the dopant density (as a function of temper-
ature and bandgap position) to get the carrier density n-. This is of course
a simplification.

4 Doping in low dimensions: Low-dimensional materials such as carbon nan-
otubes and graphene can also be doped. For carbon, nitrogen, and boron, this
is pretty common. But these raise some rather interesting questions. Now
that we know a little more about dimensionality and heterogeneity, we may
wonder if these interfaces will behave the same as their 3D counterparts.

(a) Do a literature search, and determine the lattice positions of these dopants
and their energies for both CNTs and graphene. How are they alike, and
how are they different from each other? Why might you think that they
would differ? Could it have anything to do with lattice strain, and so does
the size of the nanotube make a difference? Explain.

(b) In the above problem we asked you to make a really big simplification:
assume the field looks like that of a plane of charge at the interface. This
means E = 𝜎/𝜀where 𝜎 is the trapped charge density, whatever it might be.
While this isn’t the best assumption, we can see that the bands will bend in
a V /d fashion (d is the distance from the interface). Assume now that we
have a sheet of graphene. One half of the sheet is doped positively and the
other negatively. The “interface” is a line between the two regions. What
should the band bending look like in this case using similar simplifica-
tions? In this case, graphene is pretty conductive, and so there is significant
screening. To start with ignore this. Then try to add it in if you feel up to
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the challenge. Would your guess for the band bending hold true for carbon
nanotubes as well? Under what conditions?

5 Deep Level Transient Spectroscopy (DLTS): Developed in 1974 by D.V. Lang
[10], DLTS is an experimental technique for establishing fundamental
parameters and concentrations of charge carrier traps, such as donors and
acceptors in semiconductors. More specifically, DLTS examines the space
charge or depletion region of simple electronic devices such as Schottky
diodes or p/n junctions by measuring the dynamical transients of their
capacitance.
Quite simply, it works like this: a reverse biased p/n junction or Schottky
barrier will “look” like a capacitor for that bias (no current flow and charge
will build up on the contact plates). If an AC over voltage (say, ∼1 MHz) is
placed on the bias, the rf capacitance of the sample depends on the charge
state of deep levels in the space charge region (SCR). In the total depletion
approximation, the rf capacitance of a sample having a homogeneous doping
concentration can be written as

C0 = A

√
𝜀𝜀0e(ND − NA)

2(Vr + Vd)

A is the area of the “capacitor,” ND −NA is the total net charge concentration
in the SCR, V r is the reverse bias voltage, and for a p/n junction, let’s say,
V d is the built in diffusion voltage of the SCR. V d is the point where the
extrapolated plot of 1/C2 vs. V r intersects with the V r axis (this is known as
a CV curve). ND −NA is calculated from the equation above.
If charged trapping levels exist in the SCR, then their charge must be added
to ND −NA. So let’s assume a donor-like trap state with a concentration of
N t. Then

C0 = A

√
𝜀𝜀0e(ND − NA)

2(Vr + Vd)
− A

√
𝜀𝜀0e(ND − NA + Nt)

2(Vr + Vd)

ΔC is the change in capacitance when N t states are charged and uncharged.
(a) Show that the N t can be estimated from the charging and discharging of

the trapping states as

Nt =
2ΔC
C0

(ND − NA)

(b) In conventional DLTS, the capacitance transients appear as shown
in Figure EC7.3. From such plots we can get a rough idea of what is
happening in the system even if we know little to nothing to start. For
instance, immediately after the pulse, the capacitance changes byΔC. This
ΔC is negative for majority carrier traps and positive for minority carrier
traps, so Figure EC7.3 is for majority carriers. In the case of a Schottky
diode, or if a p/n junction is pulsed only by a small voltage, V pulse ≤V r,
only majority carrier traps are recharged. If during the pulse a p/n junction
is forward-biased into injection, minority carriers may also be recharged.
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Figure EC7.3 The basic DLTS procedure is shown. At t = 0, majority carrier traps are filled by
the bias pulse. This yields a change in the capacitance according to the above equation.
Thermal relaxation of the point defect traps between two pulses is approx. exponentially in
time. The pulses are spaced as close as 1 MHz.

The density of trap filling depends on timp and on the capture coefficient of the
traps cn;p. This is usually expressed in terms of the thermal velocity times the
capture cross section for the trap. For large pulse widths, all deep-level traps
in the SCR should be filled. For narrow pulses, only some of the levels are
filled, so the signal gets smaller. The pulse width tcapt, for one e-folding (signal
height has reduced to 1/e = 0.367 of its maximum value), lets one measure
the capture coefficient cn (for electrons) or cp (for holes) by using

cn =
n

tcapt
; cp =

p
tcapt

n and p are the free carrier concentrations for electrons and holes, respec-
tively.
Now for ΔV <V r show that

Nt =
2ΔCVr

C0ΔV
(ND − NA)

This means that for a semiconductor with a homogeneous trap distribution,
the DLTS peak height, ΔC, should be proportional to the filling pulse height
ΔV . Moreover, N t can be calculated if ND −NA is known.

(c) Finally, we must consider the effects of temperature. Traditionally, the
temperature of the experiment is varied from about LN2 temps to about
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room temperature or higher. Clearly thermal activation of the traps should
be of some importance in determining the trap depth.

The exponential relaxation seen in the capacitance is due to the charged traps
emitting their charge once the pulse bias is removed. The time constant 𝜏e of
this thermal emission of charge and the thermal emission rate itself, en;p, both
depend on the trap energy Et and on the temperature T of course. From what
we have learned about such statistics already, we can write

en,p =
1
𝜏e
=

NC;Vcn,p

g
e−Et∕kBT

The NC;V term is the density of trap states in the conduction (C) or valence
(V) bands. g is the degeneracy of the level. This is usually 1. Show how this is
derived.
How would we use such a curve to determine the trap energy and the capture
coefficients? The pulse rate, or multiples thereof, is referred to as the rate win-
dow. When this rate window is tuned to the emission rate en;p, what should
happen when the temperature is scanned slowly? Draw your expectation.
DLTS has a very high sensitivity. In fact it is higher than almost any other
semiconductor diagnostic technique. In silicon, for example, it can detect
traps at a concentration of better than one part in 1012 of the material host
atoms.
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8

Electrons Moving in Solids

When we say “electronic transport problems” in solid-state physics, it seems clear
that we mean the purposeful movement of electrons from one place to another
within the material’s volume. So given some driving force and injection of carri-
ers, we would measure the flow of electrons as a current (I) and ask: “how does
this current correlate with the applied driving forces and properties of the mate-
rials through which the current flowed?” Therein, we have the classic statement
of the transport problem.

Historically, we owe this problem largely to Georg Simon Ohm. In purely ohmic
transport, we have a simple resistance R and an applied potential U1:

U = IR (8.1)
Of course everyone has played a little with those tiny, striped resistors made of

carbon and connected batteries and ammeters to them (Figure 8.1).
But we have just introduced several models for the electronic structure of

solids. What do these have to say about the mechanisms of this process? That
is, where does the resistance come from? What about measurements on a finer
scale? If the resistor becomes thinner and thinner, do things remain the same?
These questions are what we are going to address here.

8.1 Phenomenology of Electron Dynamics in a Material

The model used to describe the flow of electrons under a driving force obviously
depends on just what the exact circumstances are that we want to understand.
Like our choices for the models in electronic structure, the material and dimen-
sion of a system will play a significant role in our choice of how to view transport
in the system. So one model doesn’t really fit all situations.

8.1.1 Free-Electron Metals

Let’s begin with the easiest example possible: a material that is well described by
the free-electron metal model. How would we handle the transport question for
such a system (shown in Figure 8.2)?

1 I had a college roommate, majoring in electrical engineering, that once claimed the whole
universe could be reduced to this simple equation.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 8.1 Transport is simply the act of measuring how electrons are pushed through a
material. Carbon resistors are pretty common, but we assume in this scenario that the wires
add nothing to the measurement.
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Figure 8.2 Consider a simple slab of Au metal that is very pure. It has dimensions: Lx , Ly , and
Lz . A voltage is placed along the Lx direction and current I is allowed to flow. Before the voltage
is put in place, we already know what the electrons are doing and their occupation of energy
levels. But immediately after the voltage is put in place, a whole new set of eigenvalue states
appear. As we will see, this new set of states is directly related to the set of states we began
with.
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Ex x

f(kx)f(kx)

kxkx
–eτ/ħ  E

Figure 8.3 The distribution of electron states shifts as an electric field is added, resulting in
more electrons with k values along −k (in this example) than in +k. These electrons will
compose the measured current.

We place a voltage on this bar of metal and measure the current as it flows
through it and out the contacts. We already know that the wavefunctions of the
electrons are those of plane waves confined by the solid’s boundaries. These single
particle states are occupied up to the Fermi level 𝜀f at kf. Thus below 𝜀f is a whole
sea of electrons moving to and fro with an ensemble average of the velocity equal
to zero. With the application of the electric field, Ex, the distribution of electrons
f (k) in k-space shifts, as a whole. The distribution is shifted by the amount of
energy that has been added to the system.

If the system is homogeneous, you get a picture as in Figure 8.3. The momentum
of each of the free electrons is mv = ℏk. The energy it gains under Ex is eEx/v𝜏 ,
where 𝜏 is the time between randomizing collisions, and so v𝜏 is the distance
the electron travels under the influence of Ex gathering energy. v is obviously the
average velocity over the interval.

The expression for I is simply the electronic charge e, times the number of elec-
trons with a given velocity v, added up for all states that are filled. The states that
are filled have changed however because of this field:

I = −2e
∫

(dkx

2π

)
f
(

kx +
e𝜏
ℏ

Ex

)
v(kx) (8.2)

With the application of the electric field, the k values go from kx to kx − e𝜏/ℏ
Ex where 𝜏 is related to the time the electron can move on average before some
scattering event in the wire. From the expression above we have

I = −2e
∫

(dkx

2π

)
f (kx)v

(
kx −

e𝜏
ℏ

Ex

)
(8.3)

I = −2eℏ
m ∫

(dkx

2π

)
f (kx)

[
kx −

e𝜏
ℏ

Ex

]
(8.4)

I = 𝜏e2

m

[
2
∫

(dkx

2π

)
f (kx)

]
Ex (8.5)

I = n𝜏e2

m
E (8.6)

I = 𝜎E (8.7)

where 𝜎 is the conductivity found in the familiar Drude metal models, and this
result resembles the well-known Ohm’s law! Writing the law in its more familiar
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form,

I = U∕R; R = U∕I; U = IR (8.8)

where I is the current, U is the voltage, and the proportionality constant R is the
resistance. The reciprocal of the resistance is the conductance. Not all conductors
obey Ohm’s law of course. Gas discharges, vacuum tubes, and semiconductors
often deviate from Ohm’s law, as do most of the one-dimensional (1D) conduc-
tors we have discussed. When resistivity or conductivity values are quoted, the
current or voltage range has to be specified where these values were obtained.

In an ohmic material the resistance is proportional to the length l of the sample
and inversely proportional to the sample cross section A:

R = 𝜌l∕A (8.9)

𝜌 is the resistivity, measured in (Ω cm). Its inverse is the conductivity (𝜌−1 = 𝜎).
The unit of the conductance is siemens (S). Siemens is the reciprocal of ohm and
sometimes is written as Ω−1 or mho (ohm backward). The unit of the conduc-
tivity is S/cm (in SI units [m] should be used rather than [cm] but [cm] is rather
common).

In many solids 𝜎 depends on the crystallographic direction and hence is not a
scalar quantity but a tensor. Such solids are said to have an anisotropic conductiv-
ity. The combination of high conductivity in one direction and zero conductivity
in the two perpendicular directions leads to 1D solids: the anisotropy approach
we have already explored in Chapter 2. In KCP, for instance, the conductivity
parallel to the platinum chains is about 200 times larger than the conductivity
in the perpendicular direction [1]; in SbF5-intercalated graphite the conductiv-
ity within the ab-plane can be up to 1× 106 times that of the c direction [2]. The
anisotropy of “highly conducting stretch aligned polyacetylene” has been deter-
mined as 𝜎perpendicular/𝜎parallel = 25 [3].

8.1.2 The Free-Electron Metal as a Fluid

Most of our concepts of electric current in the Drude model are derived from
the theory of fluids. This is evident in the terminology: current, cross section,
source, and drain. Ohm’s law is an immediate consequence thereof. Indeed, this
free-electron gas as a fluid picture was first introduced by P. Drude [4] himself
only three years after J.J. Thomson’s discovery of the electron. Drude applied the
kinetic theory of gases to a metal, which he considered as a gas of electrons. As
we just saw, in his model the conductivity is given by

𝜎 = n𝜏e2∕m (8.11)

where n is the electron density, e is the charge of an electron, m is its mass, and 𝜏
is an effective collision time (relaxation time). Introducing the mobility as

𝜇 = 𝜏e∕m (8.12)

a typical expression for conductivity is then

𝜎 = n𝜇e (8.13)



8.1 Phenomenology of Electron Dynamics in a Material 263

Replacing the free-electron mass m by the effective mass m* leads to a transport
expression for the nearly free-electron model that we introduced some chapters
back. The terminology of fluids is retained, and most of solid-state physics (in
particular the collision time 𝜏) is put into the asterisk at m*. The mobility is related
to the diffusion constant D via the Einstein relation 𝜇 = eD/kBT .

Why do moving electrons in a solid behave like a fluid? And what about elec-
tron waves? The answer lies in Bloch’s theorem, wave packets, and the net balance
of ionic and electronic charge of course. A more cumbersome detail, however, is
an explanation of where the electrical resistance comes from. Assuming partially
filled bands, the resistance is a result of deviations from the perfect crystal peri-
odicity (defects), interactions with quasiparticles like phonons and others, and
interactions between the electrons themselves (correlation effects). Of course,
when a conducting wire is of very small dimensions, scattering is no longer a sta-
tistical outcome of the flowing current but individual scattering events. In such
cases, Drude transport is modified such that the electrons are not “moving balls”
but rather plane waves entering the wire. Randomly dispersed impurity scatterers
then explain repeatable fluctuations in the current–voltage characteristics of the
system. This pattern of mesoscopic universal conductance fluctuations, as seen in
Figure 8.4, has a direct analogue in nuclear scattering [5].

Au wire
Pb impurity atoms

e–

Conductance fluctuations in nanoscopic wires

U (V)

I (
A

)

Incoming

electron plane

wave

Repeatable fluctuations

in conductance

Repeatable fluctuations

in conductance

Figure 8.4 Mesoscopic universal conductance fluctuations appear in very low-temperature
conductance curves of very narrow conducting metal channels with impurities. If the voltage
is scanned up and down, the fluctuations repeated themselves exactly, but if the conducting
wire is heated and then cooled again, the pattern changes. They are due to the interference
between the incoming plane wave of electrons introduced into the wire and the spherical
waves scattering off of the individual impurities scattering that wave. So they are an
interference pattern of sorts. When the wire is heated, the impurities migrate, changing their
positions and thus the pattern.
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8.1.3 Temperature and Conductivity

Often solids are classified by their conductivity at room temperature: for typical
conductors the conductivity is greater than several thousand S/cm, for typical
insulators it is less than some 10−12 S/cm, and for semiconductors it is in between.
Probably more significant is the classification by temperature coefficients of resis-
tance. In this case the resistance is plotted vs. the temperature: a positive slope
indicates “metallic” materials, and a negative value implies a semiconductor (or
an insulator). However, this is also only a very rough classification and does not
necessarily agree with the band structure point of view, where metals are charac-
terized by partially filled conduction bands, while semiconductors and insulators
have only completely filled and completely empty bands.

To learn more about the mechanism of electrical conductivity, the functional
dependence of the conductivity with temperature must be determined. Generally
speaking, this is the first quantitative determination an experimentalist would use
when faced with a novel conductor, and, indeed, historically this is what was used
in conducting polymers, for instance. For systems in which it is expected that a
small energy barrier exists to allow charge carriers to flow (or be generated), it
is reasonable to “guess” a functional dependence expressed by some power law
such as

𝜎 ∼ Tn (8.14)

In fact, as we will see later, this is theoretically expected for intersoliton hopping
in slightly doped polyacetylene. Alternatively, in some systems, such as crystalline
semiconductors, where a well-defined charge reservoir is present, an exponential
function of activated behavior may be appropriate:

𝜎 ∼ 𝜎0e−ΔE∕kBT (8.15)

Finally, there are occasions to consider a “soft” exponential functional form for
the temperature dependence such as

𝜎 ∼ 𝜎0e(−T0∕T)𝛾 (8.16)

with 𝛾 = 1/2, 1/3, or 1/4. This is particularly applicable in amorphous semicon-
ductors, moderately doped polymers, and other systems with hopping conduc-
tivity and charge localization (forms of electron correlation). A given system may
actually express all three of these functional forms, and so careful microscopic
analysis must generally be coupled with transport determinations to decide on
the most applicable model.

A note to budding experimentalists out there is that to decide on the functional
dependence, it is not sufficient to change the temperature by several percent (e.g.
to warm up the sample from room temperature to 100 ∘C). Temperature changes
of several orders of magnitude are needed. Large temperature changes are more
easily obtained by cooling than by heating. Cooling from room temperature to the
temperature of liquid helium is a change of nearly 2 orders of magnitude (from
300 to 4.2 K), heating from room temperature to 1000 K is only a factor of 3, and
at 1000 K many solids, in particular most organic solids, decompose. As a conse-
quence, electrical transport measurements require the use of liquid nitrogen and
in most cases of liquid helium.
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Figure 8.5 Comparison of the conductivities of
metals (solid lines) and various doped polymers
(dashed lines). Source: After Kaiser and Müller
[6, 7].
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As an example for the temperature dependence of the electrical conductiv-
ity of various materials, Figure 8.5 shows a data compilation after A.B. Kaiser
[6]. The format of the figure demonstrates an important fact about the electri-
cal conductivity: the conductivity is the parameter with the largest variability
range in solid-state physics. Although it is a logarithmic plot and the insulators
are not included, the graph has to be much greater in height than in width to
accommodate the conductivity values. (The ratio between the room temperature
conductivity of insulators and that of copper is of the same order as the diameter
of the universe in kilometers!)

The solid lines in Figure 8.5 represent “metals.” Copper and platinum are
well-behaved metals. Their conductivity increases upon cooling up to a satura-
tion point at about 10 K. This increase is a result of freezing out lattice vibrations.
The cold lattice is more perfect than the warm lattice, and consequently there is
less resistance. Below about 10 K collisions of electrons with impurity atoms are
more important than collisions with phonons. It is not possible to freeze out the
impurity atoms. This temperature-independent resistance is called the residual
resistance. The resistance of platinum above some 20 K is fairly linear, and in this
range platinum can be used as a thermometer.

Mg–Zn and Ca–Al are amorphous (glassy) metals. They have no crystal peri-
odicity, and their thermal properties (lattice vibrations) tend to be dominated by
higher energy phonons. Thus, there is little variation in conductivity/resistivity
upon cooling. However, as the temperature is raised significantly, there can be
effects of the higher energy phonons.

The dashed lines in Figure 8.5 refer to conducting polymers at various dop-
ing concentrations. Note that highly conducting polymers behave very similar
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to glassy metals. Polymers with lower conductivity show a negative temperature
coefficient in resistivity (positive in conductivity), as do semiconductors. How-
ever, the decrease in conductivity upon cooling is much slower than in the case
of crystalline semiconductors. Data for silicon, for example, would be outside
the range in Figure 8.5. In crystalline semiconductors phonons are frozen out in
the same way as in metals, but the freezing out of phonons (approximately lin-
ear with temperature) is by far overcompensated by the freezing out of electrons
(exponential). Conducting polymers behave more like amorphous semiconduc-
tors, where the electrons are not moving in bands but are located at specific states
in the gap. They hop between these localized states. Hopping is an abbreviation
for phonon-assisted tunneling [8]. As in crystalline semiconductors, the assisting
effect of the phonons is more important than their destructive effect, but in con-
ducting polymers the temperature dependence is smoother, because the phonons
do not have to excite the electrons across the gap. They act between localized
states within the gap. The excitation energies are smaller, and, in addition, the
distribution of excitation energies is continuous. Hopping conductivity will be
discussed in more detail later.

At room temperature there is not much difference between amorphous metals
and amorphous semiconductors. Actually the temperature coefficient is not the
right criterion for distinction. More relevant is the asymptotic behavior as the
temperature approaches zero: in a metal the conductivity stays finite at T → 0,
and in a semiconductor or an insulator 𝜎→ 0 as T → 0. As an example the con-
ductivity of moderately doped and highly doped polyacetylene is presented in
Figure 8.6. In the moderately doped sample, the conductivity vanishes at absolute
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Figure 8.6 Temperature dependence of the conductivity for a highly doped and a moderately
doped polyacetylene sample. Note the different asymptotic behavior as the temperature
approaches zero.
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zero, and the sample becomes insulating. The conductivity of the highly doped
sample stays finite, and the sample remains “metallic.” Figure 8.5 also shows the
behavior of a superconductor (Y–Ba–Cu–O, dotted line). The resistance disap-
pears at Tc ∼ 100 K. (In a superconductor, theory requires the conductivity to
be infinite. Of course, infinity cannot be measured, but 𝜎 > 1024 S/cm has been
observed.)

8.2 The Semiclassical Approach: The Boltzmann
Equation

While the Drude model gets us to Ohm’s law easily, it fails to account for the
many subtle attributes of the conductance in different materials at different tem-
peratures. Moreover, it seems only comfortable with static and uniform E and B
fields. Let’s now examine electronic transport in a more general way using the
semiclassical approach.

In this approach we will allow for the presence of E, B, and ΔT , and they can
all be functions of positions and time (r and t). However, we will restrict this
treatment to:
1. The independent electron approximation (same as we have been using).
2. Semiclassical motion between collisions.
3. No interband transitions: conservation of band index, n.
4. No spin change: conservation of spin state.

Naturally, everything except the multiparticle wavefunctions can be added back
in (with a lot of trouble) if we wanted. But this is an instructive place to start.

8.2.1 The Sources of Electron Scattering

First we must name all of the ways we can think of that electrons could scatter. In
the independent particle approximation, we have the following:
Lattice defects: These can be point defects such as missing or substituted atoms (as

in the case of dopants), interface defects such as grain boundaries, and other
dislocations. Such spatial inhomogeneities within the lattice have associated
with them some Coulomb-derived potential.

Thermal effects: This is scattering with phonons (as we have discussed before).
Small vibrations of atoms and their electrons about equilibrium positions have
amplitudes that depend on T . This is an important scattering source in DC
transport and is primarily responsible for the T dependence of conductivity
around room temperatures. Again the primary scattering force is derived from
Coulomb fields (local dipoles).

So, as T = >0 K, defects will dominate scattering. However, at higher tempera-
tures the role of phonons becomes greater and greater. Again, we emphasize this
is for the independent particle picture. If we allow for correlation in a multipar-
ticle wavefunction, electron–electron interactions become important, leading to
temperature-dependent phonon scattering at very high T and impurity effects at
low T . But we aren’t there yet.
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8.2.2 The Nonequilibrium Distribution Function

For our more general approach to transport, we start with consideration of our
“old friend” the distribution function

g0(k) = f (𝜀(k)) = 1∕[e(𝜀(k)−𝜇)∕kBT + 1] (8.17)

For a system of electron states in thermodynamic equilibrium, the distribu-
tion function is expressed as above. However in the presence of applied fields or
temperature gradients, a nonequilibrium distribution function g(r; k; t) occurs
in phase space, as the external forces act to drive the system and its distribution
function away from equilibrium.

From here we make a pretty important assumption about the nature of entropy
flow in the solid. We assume that the main outcome of scattering events in the
solid is to effectively relax the system to equilibrium: g(r; k; t) = >g0(k). There-
fore, if we were to make some simplifications such as semiclassical equations of
motion between collisions and simple treatments of the collisions themselves,
then a closed form expression for the time development of the system in trans-
port might be possible.

8.2.3 The Relaxation Time 𝝉

To derive a time-dependent relaxation theory of transport, we begin with the
introduction of the relaxation time constant (𝜏). It is the average amount of time
between scattering events. Therefore an electron experiences a collision in a time
interval dt with probability dt/𝜏 , and 𝜏 is in general 𝜏 (r,k). This all seems reason-
able, since collisions are not entirely random and uncorrelated. After all, they do
depend on the occupation of all k states.

8.2.4 The Differential Equation for g(r; k; t)

How does the g(r; k; t) evolve in time as it goes to t from t′ = t− dt when NO
collisions are present during the dt interval but there is applied electromagnetic
driving force F(r; k)? Well, the equations of motion will develop classically
according to

ṙ = v(k) (8.18)
ℏk̇ = −e

(
E + 1

c
v ×H

)
= F(r, k) (8.19)

Explicitly, the evolution of the system as we go from t′ to t (in the first order of
dt) looks like

t′ = t − dt → t (8.20)
r′ = r − v(k)dt → r (8.21)
k′ = k − F

ℏ

dt → k (8.22)

The number of electrons that occupy the phase space volume ofΔrΔk centered
on r and k at time t is just

ΔrΔk
8π3 g(r, k, t) = v(k) (8.23)
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We are ignoring spin for the moment. Similarly, the number of electrons occu-
pying phase space volume Δr′Δk′ centered on r′ and k′ at time t′ is

Δr′Δk′

8π3 g(r′, k′, t′) = Δr′Δk′

8π3 g
(

r − v(k)dt, k − F
ℏ

dt, t − dt
)

(8.24)

If there are NO collisions in dt, then all the electrons that are inΔr′Δk′ centered
on r′ and k′ at time t′ end up in ΔrΔk centered on r and k at time t. Therefore,

ΔrΔk
8π3 g(r, k, t) = Δr′Δk′

8π3 g
(

r − v(k)dt, k − F
ℏ

dt, t − dt
)

(8.25)

From the Liouville theorem,
ΔrΔk

8π3 = Δr′Δk′

8π3 (8.26)

and

g(r, k, t) − g
(

r − v(k)dt, k − F
ℏ

dt, t − dt
)
= 0 (8.27)

Now we expand the second term in this expression around g(r; k; t) to the first
order in dt:

g
(

r − v(k)dt, k − F
ℏ

dt, t − dt
)
= g(r, k, t) −

𝜕(g ⋅ v(k))
𝜕r

dt

+
𝜕(g ⋅ F∕ℏ)

𝜕k
dt +

𝜕g
𝜕t

dt (8.28)

yielding

−
𝜕(g ⋅ v(k))

𝜕r
+
𝜕(g ⋅ F∕ℏ)

𝜕k
+
𝜕g
𝜕t
= 0 (8.29)

when there is NO scattering present.

8.2.5 Introducing Collisions

Now, as we introduce collisions, the right-hand side of the above expression is no
longer zero.

−
𝜕(g ⋅ v(k))

𝜕r
+
𝜕(g ⋅ F∕ℏ)

𝜕k
+
𝜕g
𝜕t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Drift term

=
(
𝜕g
𝜕t

)

coll
⏟⏞⏞⏟⏞⏞⏟

Collision term

(8.30)

The right-hand side of the equation is known as the collision term, and the
left-hand side is the drift term, and this equation has become known as the Boltz-
mann equation.

If the forces and the specific effects of the collision terms are specified, then
this becomes a simple initial value problem to determine g(r; k; t).

We have already supposed that the interactions or collisions are local in nature,
derived from Coulombic forces that are likely to be dipole-like or shorter range.
Thus, for collisions that happen to electrons near r at time t, they are determined
only by properties of the system at r and t and nowhere or time else. Therefore,
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we can simplify our notation by dropping explicit r and t dependencies in g(r; k;
t) = >g(k).

So, we consider collisions that instantaneously change the crystal momentum
from Δk′ centered on k′ to Δk centered on k. In doing this we must distinguish
those collisions that increase and decrease the occupancy of states at k:

(
𝜕g
𝜕t

)IN

coll
> 0;

(
𝜕g
𝜕t

)OUT

coll
< 0 (8.31)

OUT : The electrons scattered out of the volume Δk centered at k will go some-
where else in k-space. This will presumably be Δk′ centered at k′ where k′ is
any other vector not already occupied and available by conservation of energy.
We can write the contribution of these scattering events to g(k) as

(
𝜕g
𝜕t

)OUT

coll
= −g(k)

∫

Δk′

8π3 Wkk′ (1 − g(k′)) (8.32)

It is negative because it is a net reduction of occupancy in k, and the g(k) weight-
ing factor is necessary because the states must be filled to scatter of course.

IN : These are the electrons that are scattered into theΔk volume from elsewhere.
Again presumably they come from some other region of k-space:Δk′ centered
at k′. Using the same reasoning as above, we have

(
𝜕g
𝜕t

)IN

coll
= (1 − g(k))

∫

Δk′

8π3 Wk′kg(k′) (8.33)

Notice now that we have introduced a term that points to specific models for the
interaction: the matrix element, W k′k . This is naturally the quantum mechani-
cal probability of making the k′ to k transition and will look something like these
matrix elements often do: ⟨k′|Operator |k⟩. Operator here simply means the spe-
cific model for the interaction: like dipole (see Fermi’s golden rule).

The detailed balance of these events now adds up to give
(
𝜕g
𝜕t

)

coll
= −

∫

Δk′

8π3 {Wkk′g(k)[1− g(k′)]−Wk′kg(k′)[1− g(k)]} (8.34)

8.2.6 The Relaxation Time Approximation

The relaxation time approximation is an attempt to get around direct calcula-
tion of the W k′k matrix element. In it we assume locality such that OUT events
depend only on g(k) and IN events depend only on g0(k), the local equilibrium
distribution prior to collisions. So we have

(
𝜕g
𝜕t

)IN

coll
=

g0(k)
𝜏(k)

;
(
𝜕g
𝜕t

)OUT

coll
= −

g(k)
𝜏(k)

(8.35)

and
(
𝜕g
𝜕t

)

coll
≈ −

g(k) − g0(k)
𝜏(k)

(8.36)
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giving a Boltzmann equation as

−
𝜕(g ⋅ v(k))

𝜕r
+
𝜕(g ⋅ F∕ℏ)

𝜕k
+
𝜕g
𝜕t
= −

𝛿g
𝜏(k)

(8.37)

This form of the equation is just what we expected that the collision term serves
to restore equilibrium by balancing the drift terms.

8.2.7 Isotropic Scattering from Stationary States

If we consider the case where scattering is to be isotropic and from stationary
states, then g0(k) is not a function of r and t at all. So writing the difference
between distribution functions as we did above

𝛿g(k) = g(k) − g0(k) (8.38)

we can approximate
𝜕(𝛿g)
𝜕r

=
𝜕g
𝜕r
;
𝜕(𝛿g)
𝜕k

=
𝜕(g − g0)
𝜕k

;
𝜕(𝛿g)
𝜕t

=
𝜕g
𝜕t

(8.39)

for the system. Then the Boltzmann equation reduces to

−
𝜕(𝛿g ⋅ v(k))

𝜕r
+
𝜕((g0 + 𝛿g) ⋅ F∕ℏ)

𝜕k
+
𝜕(𝛿g)
𝜕t

= −
𝛿g
𝜏(k)

(8.40)

So, in the case of purely isotropic perturbations from stationary states
(∇rT = 0), this last approximation is what we use. However in the case of
non-isotropic perturbations (∇rT ≠ 0 and 𝜇 = 𝜇(r)), then we must return to the
full Boltzmann equation above.

8.2.8 A Simple Example: Ohm’s Law

In case of isotropic scattering with stationary states and with a static and small
uniform applied E, we can write

𝜕(𝛿g)
𝜕t

= 0 (stationary state) (8.41)

and
𝜕(𝛿g)
𝜕r

= 0 (8.42)

(deviations from equilibrium cannot depend on r). Also
𝜕(𝛿g ⋅ E)
𝜕k

(8.43)

since it will be of the second order in E. Then we have
𝜕g0

𝜕k
= ∇k𝜀(k)

𝜕g0

𝜕𝜀

= ℏv(k)
𝜕g0

𝜕𝜀

(8.44)

𝛿g = eE ⋅ v(k)𝜏(k)
𝜕g0

𝜕𝜀

(8.45)
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Returning to the equations used to relate the velocity and the current in the Drude
model above, we now have

j = −e
∑

k
𝛿g(k)v(k) = −e2

∫

dk
(2π)3

[E ⋅ v(k)]v(k)𝜏(k)
𝜕g0

𝜕𝜀

(8.46)

We have included now the tensor properties of the conductivity unlike before:

ji =
∑

j
𝜎ijEj (8.47)

with

𝜎ij = e2
∫

dk
(2π)3

𝜏(k)vi(k)vj(k)
[ −𝜕g0

𝜕𝜀(k)

]
(8.48)

So what is different?

1. Anisotropy: Typically j is not parallel with E. Of course it would be in cubic
materials but not generally.

2. Filled bands: Only the deviations from completely filled bands are important.
3. Importance of the Fermi surface: Notice that the integral is nonzero only in an

interval around 𝜀f since the term in the square brackets is zero everywhere
else. So conductivity is determined only by the conduction band in an interval
of kbT around 𝜀f.

8.2.9 Parabolic Bands

If we take
−𝜕g0

𝜕𝜀(k)
= 𝛿(𝜀 − 𝜀F) (8.49)

and the average velocity of the electrons as

⟨vivj⟩ = ⟨v2
i ⟩𝛿ij =

1
3

v2
𝛿ij (8.50)

as well as counting 2 for the spin degeneracy in the system, then

𝜎 = 2e2
∫

dk
(2π)3

𝜏(k)1
3

v2(k)𝛿(𝜀 − 𝜀F) (8.51)

𝜎 = e2

12π3 ∫Fermi surf
𝜏(k) v2(k) dS

|∇k𝜀(k)|
(8.52)

𝜎 = e2

12π3 ∫Fermi surf
𝜏(k) v(k)dS

ℏ

(8.53)

Now consider the case of isotropic and parabolic bands. The Fermi surface is
a Fermi sphere, and the integral above gives only the surface area of that sphere.
This gives us

𝜎 = e2

12π3 𝜏FvF
1
ℏ

4πk2
F =

ne2
𝜏F

m∗ (8.54)

This is exactly the expression we said we would get above using the Drude
model, with the mass of the electron being replaced by the effective mass m*.



8.2 The Semiclassical Approach: The Boltzmann Equation 273

8.2.10 Another Simple Example: AC Conductivity and Linear Response

Again we begin with the linearized Boltzmann equation for 𝛿g, but now we
introduce a time-dependent E. Of course this means that unlike before we must
keep all d/dt terms in our equation. However, like last time, 𝜕

𝜕k
𝜕g•E terms will be

ignored. This gives us

−
𝜕(δg ⋅ v(k))

𝜕r
− eE
ℏ

⋅
𝜕g0

𝜕k
+
𝜕(δg)
𝜕t

= −
δg
𝜏(k)

(8.55)

Consider now

E(r, t) = E0ei(q ⋅ r−𝜔t) (8.56)

In the linear response approximation,

δg(r, k, t) = Φ(k)ei(q ⋅ r−𝜔t) (8.57)

So we have

−i𝜔Φ + v ⋅ iqΦ − e
ℏ

E0
𝜕g0

𝜕k
= −Φ

𝜏

(8.58)

and

Φ(k) =
e𝜏E0 ⋅ v

1 − i𝜏(𝜔 − q ⋅ v)
𝜕g0

𝜕𝜀

(8.59)

Recalling the expression for the current in terms of electron velocity,

j = −e
∫

dk
(2π)3

δg(k)v(k) (8.60)

j = −e
∫

dk
(2π)3

Φ(k)ei(q ⋅ r−𝜔t)v(k) (8.61)

j = −e
∫

dk
(2π)3

e𝜏E ⋅ v
1 − i𝜏(𝜔 − q ⋅ v)

𝜕g0

𝜕𝜀

v(k) (8.62)

and the conductivity

𝜎ij = e2
∫

dk
(2π)3

𝜏(k)vi(k)vj(k)
1 − i𝜏(k)(𝜔 − q ⋅ v(k))

[ −𝜕g0

𝜕𝜀(k)

]
(8.63)

which reduces to the previous case when q = 0 and 𝜔 = 0.

8.2.11 An Example with Anisotropy: 𝝁= 𝝁(r) and 𝛁rT ≠ 0

In this case g0 depends on r, so we have to use the full Boltzmann expression from
which we get

𝜕g
𝜕r
=
𝜕g
𝜕𝜇

⋅ ∇𝜇 +
𝜕g
𝜕T

⋅ ∇T (8.64)

If we take the linear expansion and equate perturbative terms,
𝜕g
𝜕𝜇

≈
𝜕g0

𝜕𝜇

=
g0

kBT
e(𝜀−𝜇)∕kBT (8.65)



274 8 Electrons Moving in Solids

𝜕g
𝜕T

≈
𝜕g0

𝜕T
=
(𝜀 − 𝜇)g2

0 kB

(kBT)2
e(𝜀−𝜇)∕kBT (8.66)

And, since
𝜕g
𝜕𝜀

≈
𝜕g0

𝜕𝜀

= −
g2

0

kBT
e(𝜀−𝜇)∕kBT (8.67)

we can express the right-hand side of the above equation in terms of
𝜕g0

𝜕𝜀

(8.68)

So
𝜕g
𝜕𝜇

≈ −
𝜕g0

𝜕𝜀

(8.69)

𝜕g
𝜕T

≈ −𝜀 − 𝜇
T

𝜕g0

𝜕𝜀

(8.70)

Likewise
𝜕g
𝜕k

can be expressed in terms of
𝜕g0

𝜕𝜀

. So (8.71)

𝜕g
𝜕k

=
𝜕g
𝜕𝜀

𝜕𝜀

𝜕k
≈
𝜕g0

𝜕𝜀

𝜕𝜀

𝜕k
=
𝜕g0

𝜕𝜀

ℏv(k) (8.72)

Substituting this into the above and taking only the stationary regime
𝜕g
𝜕t
= 0 (8.73)

we get

𝜏(𝜀(k))v(k) ⋅
(
∇r𝜇 +

𝜀 − 𝜇
T

∇rT + eE
)(

−
𝜕g0

𝜕𝜀

)
= g0(k) − g(k) (8.74)

ignoring higher-order terms in E and ∇rT .

8.2.12 The Seebeck Effect and Thermopower

This example highlights the fact that an electrical potential isn’t the only way to
push electrons around a material. As we have seen, the electronic density and
mobilities of a material are temperature dependent. Thus, if there is any ther-
mal asymmetry in a material such that, for instance, one part is hot and the other
cold, then electrons will move quite differently in the parts. This naturally implies
a direct buildup of charge somewhere. So, if one end of a metal bar is hot and the
other cold, the hot electrons, moving much faster, will find their way to the cold
end long before any cold electrons make it to the hot end. The electron imbalance
yields an internal field that can be used to drive current so long as the asymme-
try is maintained. We call this a thermoelectric voltage, and it is part of a larger
mechanism called the Seebeck effect. This is exactly what is being expressed in the
above equation. (Note in the derived expression we also allow for an applied E.)

The experimental condensed matter scientist frequently uses thermoelectric
power measurements to understand how heat energy is coupled into a materials
system (Fermi level spreading, phonon scattering, etc.). The setup can be visual-
ized in a simple diagram as in Figure 8.7.
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Figure 8.7 A simple thermoelectric power measurement is shown schematically. A thermal
gradient is established and the current and voltage generated is measured. This is usually
done as a function of different background temperatures.

In our drawing, essentially a temperature gradient is established between the
current leads of a four-probe measurement. The charge carriers at the warmer
end of the sample have more kinetic energy than those of the cooler end and are
allowed to diffuse as described by the Boltzmann expression above. This results in
a thermoelectric potential and a measured current when the leads are closed. The
current supplied at a given thermovoltage is then the thermopower in simplest
terms. It is easy to see why such a measurement could be of use. First, the sign
of the carrier is the sign of the thermopower. So it is easy to determine if the
sample is a hole majority carrier or an electron majority carrier. Secondly, the
thermopower is the largest where there is a small population of phonons and a
high carrier mobility and density. In fact, it is quite sensitive to electronic features
at the Fermi level of the sample and their coupling to the phonon modes of the
system as should be evident from the above expressions.

There are many quality factors associated with the thermopower of a material
at a given ΔT . The most common starting place is the Seebeck coefficient “S,”
which gives the voltage ([volts]/degree of temperature difference [kelvin]). The
expression for this Seebeck coefficient is

S = −ΔV∕ΔT (the minus sign is convention) (8.75)

And it is temperature dependent. That is, it has different values for different back-
ground temperatures.

To understand the thermoelectric effect from our expression above, we must
use it to construct a picture. Consider the microscopic diffusion of carriers (elec-
trons, for example) under a thermal gradient. In the hot volume of the sample,
the carriers occupy a larger variation in energy states (as discussed previously) as
compared to the cooler part of the sample. That is, the high energy states have a
higher carrier occupation per state in the hot part of the sample. Of course this
means the hot volume of sample also has a lower occupation per state at the lower
energy states. This can be visualized as a spreading of the Fermi function in the
hot side of the sample. The high energy carriers, with their relatively higher veloc-
ities, diffuse away from the hot side of the sample. As they diffuse, they interact
with the lattice and carry entropy as they approach the cold side of the sample.
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Simultaneously, low energy carriers slowly drift back toward the hot end of the
sample to fill the low energy states. This “backflow” of current competes with the
current from the hot side, and both processes carry some entropy. A net current
occurs when one of these diffusive drifts is stronger than the other, and the net
current is given by J =𝜎SΔT , where𝜎 is simply the bulk conductivity at the overall
temperature of the system. To be sure, the diffusion rates can depend on veloc-
ities, density of states, and rates of scattering, so it is not a forgone conclusion
that the hot electrons will dominate. The Seebeck coefficient and thermoelectric
power can be either positive or negative, representing hole dominance or electron
dominance, respectively. Another way to say this is that the holes or electrons may
have the higher conductivity in the system. This language is most useful when
describing doped semiconducting materials.

We can use this picture to describe the thermoelectric effect in a material for
which the carriers are relatively noninteracting (an electron gas). In this situation
of low correlation, we can combine the expressions above to write the conductiv-
ity as a simple integral (left as an exercise):

𝜎 =
∫
𝜎
′(𝜀)

(
−
𝜕f
𝜕𝜀

)
d𝜀 (8.76)

where 𝜎′(𝜀) is the conductivity as a function of energy and f is the familiar
Fermi function. The integral is worked over the whole energy range. In the linear
response limit, we can then write the thermoelectric coefficient

𝜎S = −
kB

e ∫

(
𝜀 − 𝜇
kBT

)
𝜎
′(𝜀)

(
−
𝜕f
𝜕𝜀

)
d𝜀 (8.77)

where kB is Boltzmann’s constant, 𝜇 is the chemical potential (Fermi level), e is
the electronic charge, and 𝜎 is the total conductivity. Since 𝜎 is frequently an
independently measured entity, we can write this as

S = − 1
eT𝜎 ∫

(𝜀 − 𝜇)𝜎′(𝜀)
(
−
𝜕f
𝜕𝜀

)
d𝜀 (8.78)

where we now have to figure out how to get 𝜎′(𝜀). These expressions are known
as the Mott relations for thermoelectrics. They require more input specific to a
given system under study. For example, we can write a simple expression:

𝜎
′(𝜀) = e2g(𝜀)D(𝜀) (8.79)

where g(𝜀) is the density of electronic states and D(𝜀) is the diffusion constant.
Again, this is following our “noninteracting” model. To apply the above relations
to semiconductors or metals, specific considerations and simplifications are used
to write 𝜎′(𝜀) and to work the integral.

The Mott expression has been used in conjunction with analytical models to
predict thermoelectric behavior in simple “noninteracting” systems and gener-
ally fails for systems in which there are strong correlations. However, it has been
found to be surprisingly useful for mats of conducting fibers (polymers, nan-
otubes, etc.). Referred to as heterogeneous conduction, the Mott approach has
become quite powerful in determining the effects of dopants on transport in 1D
systems [9]. Typically, the Mott expressions are modified to allow for a metallic, a
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Figure 8.8 Thermopower measurements express majority carrier and dopant levels within
fibrillar transport. In the case shown here, different dopants are compared: oxygen (a), boron
(b), and nitrogen (c). Courtesy: R. Czerw, Wake Forest University.

semiconducting, and a variable range hopping contribution to the thermopower,
and they are each dominant at different temperatures. The metallic term is gen-
erally linear, a quadratic term is seen for the semiconducting component, and an
exponential term expresses the variable range hopping between fibers in a dense
mat. These are added together as

S = 𝛽T + qTp(e𝜎T2)−1eTp∕T [eTp∕T + 1]−2 (8.80)
Tp = (𝜀 − 𝜇)∕kB (8.81)

where 𝛽 can be used as a fitting parameter, q is the charge and takes on positive
and negative values, and the other constants are defined above. As an example of
this, consider mats of multiwalled carbon nanotubes. One might wish to know
the effects of “doping” impurities in such materials, and thermopower or See-
beck coefficient is a particularly good way to examine these phenomena in detail.
Shown in Figure 8.8 is the thermopower as a function of dopant type. Line a is for
multiwalled nanotubes exposed to oxygen (thought to weakly dope the tube posi-
tively), and Line b for tubes that are heavily doped with boron. This thermopower
curve is positive and linear, indicating a hole majority carrier and nearly metallic
behavior of the fibers. Finally, Line c shows a mat of nitrogen-doped nanotubes
where the nitrogen is introducing donor states, yielding an electron majority car-
rier material (negative curve) and again linear (metallic) behavior. This follows
the expression above very well.

8.2.13 A Final Example: Static E and B Applied but 𝝁≠𝝁(r) and 𝛁rT = 0

In this final case a static E and B are applied to the material. The linearized Boltz-
mann equation with the Lorentz force has now become

𝜕g
𝜕t
− ev ⋅ 𝜀

𝜕g0

𝜕𝜀

− e
ℏc

v × B ⋅
𝜕g
𝜕k

=
𝛿g
𝜏

(8.82)
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Figure 8.9 The “Hall bar” for magnetotransport measurements. E is applied along the 1–2
direction, whereas the B field is perpendicular, coming out of the page.

−ev ⋅ 𝛆
𝜕g0

𝜕𝜀

− e
ℏc

v × B ⋅
𝜕g
𝜕k

= 0 (8.83)

g =
ℏc𝜀kx

B
𝜕g0

𝜕𝜀

(8.84)

We are going to consider the high field limit here. Therefore, we will ignore the
collision terms. The last equation comes from a specific choice of field directions:
E = Ey and B = Bz. This is done to correspond to the typical Hall effect measure-
ment geometries found in most research labs and shown in Figure 8.9. Notice
also that we are again expressing the drift of electrons in this equation.

We note here that kx is not a smooth, single-valued function over the Brillouin
zone due to the Bloch periodicity. So our equation only really makes sense if the
derivative 𝜕g0/𝜕ε confines k to the FBZ. So

jx =
2ec𝜀

B ∫Ω

d3k
(2π)3

kx
𝜕𝜀

𝜕kx

𝜕g0

𝜕𝜀

(8.85)

jx =
2ec𝜀

B ∫Ω

d3k
(2π)3

kx
𝜕g0

𝜕kx
(8.86)

Integrating by parts and assuming g0 vanishes at the zone edge,

jx =
2ec𝜀

B ∫Ω

d3k
(2π)3

g0 = −
nec𝜀

B
(8.87)

From this we can conclude

𝜎xy = −𝜎yx = −
nec
B

(8.88)

and this does not depend on any details of the band structure at all.
For a hole majority material (p-type), the problem is worked the same way

though we must replace g0
′ = (1− g0), so

jx = −
2ec𝜀

B ∫Ω

d3k
(2π)3

g′0 =
nec𝜀

B
(8.89)

and

𝜎xy = nec∕B (8.90)

where n is the hole density.
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In such measurements we typically will define the following parameters:

RH = −𝜌xy∕B; Hall coefficient (8.91)
zH = −1∕nionecRH; Hall number (8.92)

where nion is the ion density in the material. We note that for high field values,
the off-diagonal terms of the 𝜌 (𝜌ij) and 𝜎 (𝜎ij) matrices can be ignored. Thus
RH ∼±1/nec and zH = ±n/nion.

8.2.14 The Hall Effect and Magnetotransport

So what does this mean physically? If electrical carriers moving in a current are
subjected to an applied magnetic field, they will “feel” a Lorentz force. This has
the effect of bending the path of the carrier as it moves through the material.
There are two consequences of this: firstly, the resistance will increase. The resis-
tance change is called magnetoresistance. Secondly, for a finite-sized sample, the
carriers will “accumulate” along the edges of the sample for a B field applied
perpendicular to their original flight path – assuming little scattering. This accu-
mulation of charge is responsible for the observed Hall voltage. The movement of
these carriers in different directions can be very anisotropic. So it is no surprise
that the determination of the Hall voltage as a function of current and B-field
strength can lead to some important insights into the materials properties. For
instance, in a very rudimentary way,

VHall = −IB∕net (8.93)

where I is the current, B is the field strength (applied perpendicularly), t is the
sample thickness, e is the elementary charge, and n is the carrier density of the
material. Thus the Hall voltage gives the number density of carriers as well as the
sign of the primary current carrier.

For measurements in a magnetic field, often “Hall bars” are used. An example
is shown in Figure 8.9. The current passes through the contacts 1 and 2; a voltage
drop proportional to the resistance or magnetoresistance is picked up between
probes 3 and 4 and 5 and 6. Between 3 and 5 or 4 and 6, the Hall voltage can
be determined. An example of this is seen in Figure 8.10. In this example the
resistivity, marked as 𝜌xx, and 𝜌xy, represents the flow of current in the different
directions. The curves shown are taken at different temperatures. So, the higher
the temperature, the more washed out any fine structure in the curve becomes
due to thermal agitation of the carriers. Now as we mentioned above, the Lorentz
force gives rise to close circle orbits for the electrons that are injected (Landau
levels). Along the edges there is a half circle “hopping” orbit. When integral num-
bers of such orbits correlate with the sample dimensions, resonances can occur,
and this is seen in the figure.

Of course there are many other variations on this theme such as the quantum
Hall effect, the fractional quantum Hall effect, the spin Hall effect, the quantum
spin Hall effect, and the anomalous Hall effect. These all take into account the
various ways electron orbits will be modified in the magnetic field and look for
fine structure within the Hall voltage and resistivity. This, of course, means exper-
iments are carried out at low temperatures.
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Figure 8.10 Shown here is the magnetotransport data that first demonstrated this effect in a
clean, two-dimensional electron gas at a GaAs–AlGaAs inversion layer. 𝜌xy and 𝜌xx are shown
vs. magnetic field for a set of four temperatures. The Landau level filling factor is 𝜈 = nhc/eB. At
T = 4 : 2 K, the Hall resistivity obeys 𝜌xy = B/nec (n = −1.3× 1011 cm2). At lower temperatures,
quantized plateaus appear in 𝜌xy(B) in units of h/e2. Source: Taken from Tsui et al. 1982 [10].
Reproduced with permission of American Physical Society. The work eventually won the Nobel
Prize in Physics.

8.2.15 The Curious Case of Al

So if we carry this measurement out on most metals, we should get a positive RH,
reflecting the electron majority nature of the metal. However, we are surprised
by Al. In this case at high fields, we get RH = −1. Why is this negative? Well, as
it happens Al has both electron and hole bands. Its valence is 3: two electrons go
into a filled band, and one electron is left to split between unfilled electron and
hole bands. So n = 3nion and the Hall conductivity is

𝜎xy = (nh − ne)ec∕B (8.94)
We can argue a value for (nh − ne) in this expression as the following. The electron
density in the hole band is given by

n′e = 2nion − nh (8.95)
with the total density of states in the band with two states per unit cell minus the
number of empty levels, which are the holes, so

nh − ne = 2nion − (ne + n′e) = nion (8.96)
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where we have used

ne + n′e = nion (8.97)

since one electron from each ion is shared between two partially filled bands.
Thus

𝜎xy = nionec∕B = nec∕3B (8.98)

zH = −1 (8.99)

At lower fields we have

zH = +3 (8.100)

which is of course the free-electron gas result with suppressed interband scatter-
ing.

8.3 Coherent Transport: The Landauer–Büttiker
Approach

This semiclassical treatment of Boltzmann’s drift and scattering that relaxes the
system to g0 is compelling. It works well for a large number of experimental cases
as we have seen. However, when dimensions are reduced in the structures that
are carrying the current, the approach can still be a little simplistic or misleading.
To see how, consider one of the isolated 1D systems we have already discussed.
In any such system such as templated dichalcogenides, to metal atoms that are
aligned along the step edges of an insulating crystal’s surface, transport is really
only related to the transitions between k’s going forward and backward along the
wire. But how do we place these electrons onto that wire without creating some
sort of contact that will introduce a heterogeneous potential at the interface? Or
alternatively think of our carbon 1D system: conjugated polymers. In this case we
have already suggested that the carrier and then lattice are strongly coupled. Thus
the electron–phonon interaction isn’t necessarily a scattering interaction with
limited and finite time scales (allowing for our “relaxation time” approximation).
Instead these interactions can “lock” the carrier and lattice distortion together as
we shall see in the next chapter. But this surely cannot be thought of as a simple
relaxation of the system to g0.

To move beyond simple drift equations for these low-dimensional structures,
we will need two important observations. The first observation is that carrier con-
finement in the structure will reduce the number of electrons allowed down the
wire. The box modes that arise due to confinement must obey Pauli’s principle. So,
each state gets only two electrons (spin-up and spin-down). Thus, realistically we
must think of the conducting channel in such mesoscopic systems as waveguides
for these modes.

We have also erroneously assumed above that the contacts make no difference.
But as we have pointed out already, they are made from metals and will have
a different Fermi energy than the channel we are calculating. This can add or
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subtract electrons into or from the channel. This second observation takes us into
experimental details that we will not address here.

These two observations for transport in mesoscale structures were dealt with
rather elegantly by Landauer in 1957: known as the Landauer–Büttiker (LB) for-
malism [11–13]. In this approach we view the problem more formally as a trans-
mission problem. The current integral above is modified only slightly as

I = 2e
h ∫

M(𝜀)g(𝜀)T(𝜀)d𝜀 (8.101)

where M represents the number of propagating modes in the channel, g is the
deviation from the equilibrium distribution function as we saw before (expressed
ion as the variable 𝜀 here), and T is the transmission probability function. The
integral is worked over only the difference in energies between the metal con-
tacts, that is, the applied voltage plus the differences in Fermi energies. The M
and g functions are again only counting functions, whereas the T is related to
impurities, excitations, or anything else that might scatter the electron.

We note here that the important subtlety is enumerating and counting the
modes because this can depend on the width of the channel. As the channel
gets smaller and smaller, the number of electrons allowed through at a time goes
down. But think of how appropriate this is in view of our earliest section describ-
ing how current flow is like liquid flow. And here we see some correspondence
again to that same idea, as the conductance of a fluid-carrying tube is directly
related to its diameter. And just as there is a smallest fluid conductance (one atom
at a time is allowed down the tube), we can imagine the same with electrical con-
ductivity. If we take the accepted definition of electrical conductance G = I/V ,
then in the limit of a small number of modes, this integral reduces to

G = 2e2MT∕h (8.102)

Assuming T = 1 for ballistic transport, then

Gn = 2e2n∕h (8.103)

where n is the number of transmission modes. In other words, the conductance
becomes quantized, even for ballistic transport (no scattering). Moreover, LB for-
malism holds generally for electrons that are coherent – they maintain phase
information along the length of the wire. So even for perfectly ballistic systems,
there is a finite smallest resistance of 12.9 kΩ per conduction channel. This is an
important number to keep in your mind.

The quantity G0 = 2e2/h = 19.37 μS = 1/(12.9 kΩ) is known as the conductance
quantum. It is interesting to note that the conductance quantum is related to
the famous fine-structure constant 𝛼 = 2𝜋e2/hc. G0 is a combination of general
physical constants only, and there is no material-specific parameter entering in
the conductivity of 1D metals. In other words it is a constant of the universe: a
truly surprising result!

LB formalism lends itself rather well to the addition of interaction physics
within the wire. There are numerous generalizations that include time-dependent
fluctuations and dissipation [11]. In systems such as carbon nanotubes where
the mean free path for scattering is of the order of 1 μm, LB formalism can be
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used to understand what excitations couple most strongly to electrons traveling
through the lattice – in this case it happens to be optical phonons [14].

8.4 General Remarks on Measurements2

Let’s make some connection with the lab here. There are many techniques for
actually measuring current flow in a wire, even for some very small and very dif-
ficult samples. However, what we might refer to as conductance in a thin film and a
nanowire can be very different things measured in different ways (or at least with
really different units). So here we have listed the most common measurements
for reference.

8.4.1 Simple Conductivity

The conductivity measurement seems to be quite simple: take an ohmmeter from
the shelf and connect it with two alligator clips to the sample. In many cases this
will do, but in many others there will be difficulties. The major problems are as
follows:

1. The conductivity can vary over a large range, either from sample to sample
or within a sample if the temperature, the pressure, or the doping levels are
changed.

2. The contacts could influence the measurement.
3. Homogeneity and anisotropy of the sample complicates geometries.

Actually, measurements are only simple when the resistance of the sample is
in the range of some kilo-ohms (kΩ) to some mega-ohms (MΩ). In this case a
current of some milli- or microamperes is passed through the sample, and the
corresponding voltage is around one to 10 V. Large currents can easily cause the
sample to warm up by Joule heating (changing the resistivity), and small voltage
signals are often difficult to separate from the thermopower and contact voltages
at interconnects.

With very low resistance of the sample, an ohmmeter would just determine the
resistance of the leads. With very low conductivity only leakage currents through
the cable insulation would be measured rather than currents through the sample.
To avoid lead and contact resistances for low-resistance samples, the “four-lead
method” is favorable, where current leads are separated from voltage leads. An
example is shown in Figure 8.11. Four thin gold wires are glued to the sample with
silver paste. The current I is applied through the outer leads, and the voltage V is
picked up at the inner leads (voltage probes).

The resistance is calculated using Ohm’s law, and the resistivity is obtained
from above, where l is now the distance between the voltage probes. In
Figure 8.11 an equivalent circuit to the one in Figure 8.12 is shown. The current

2 This is included to give the reader some idea of how to examine historical literature. While it is
clear that experimental techniques in the field are today quite complex, it wasn’t always so. Thus,
when looking at older result, it is a good idea to ask how trustworthy the results actually are.
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V

Sample

Iout

Iin Figure 8.11 Four-lead method on a
needlelike sample. Four thin gold wires
are glued to the sample by silver paste or
some other metallic/conducting glue.
Sometimes just “alligator clips” will do.

R3
R4

R2R1 Sample: Rx

V V

I I

Figure 8.12 Equivalent circuit for four-lead method.

I passes through the sample and creates a voltage drop RxI. The equivalent resis-
tors R1 and R2 represent the resistance of the leads and the contact resistance
from lead to sample, respectively (which can be much higher than any other
resistance in the circuit). There are voltage drops R1I and R2I; the current source
sees the sum R1I +RxI +R2I. The voltmeter, however, measures the voltage
drops R3I′ +Rx(I + I′)+R4I′, where I′ is the current in the voltmeter circuit and
I′≪ I, so that it actually determines Rx even if R3, R4 ≥Rx.

Naturally, nothing is as easy as it seems. For the case of an organic crystal
sample, the contact glue has to be carefully chosen in order not to dissolve the
sample. If the sample contains iodine, as in iodine-doped polyacetylene, silver
paste should be replaced by gold paste. Silver reacts with iodine to form highly
insulating silver iodide, resulting in extremely high values for R1 and R2. Thus,
not enough current can be passed through the sample to yield sufficiently large
voltage signals. Organic crystals are often very brittle and break on cooling due
to elastic tension. These tensions can be avoided by using very thin gold wires
and thermally annealing the wires before pasting them to the sample. In the case
of conducting polymers, brittleness is less severe, and it is often sufficient to just
press the sample against four equidistant platinum wires (Figure 8.13).

A fairly large error, from the geometrical factor l/A, affects the determination
of resistivity for several reasons: crystals are often odd shaped, the thickness of
thin films is difficult to measure, and the distance between two blots of silver
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Bottom plate

Cover plate

Tightening screws

Sample

Four platinum wires

Figure 8.13 Simple sample holder for measuring the conductivity of conducting polymers by
the four-lead method. Typical sample size 2 mm× 8 mm and 100 μm thick. The platinum wires
are about 0.2 mm in diameter and squeezed into groves of the bottom plate. For room
temperature measurements, top and bottom plates can be made of acrylic glass, and at low
temperatures ceramic or sapphire plates are advisable.

Figure 8.14 Four-point probe method for
conductivity measurements.

Sample

I IV V

paste is ill-defined. Semiconductor physicists have developed more accurate
methods – the four-point method and the van der Pauw method [15]. The
four-point method is indicated in Figure 8.14. It is a special case of the four-lead
method discussed above. Here the contacts must be point contacts. Four-point
contacts are equidistant and in a straight line. They are pressed against a
plane surface of the sample. The sample must be much larger than the contact
arrangement, and it must be “infinitely thick.” The geometrical factor can then
be obtained by integrating over all current paths, and the resistivity is

𝜌 = 2πdV∕I (8.104)

where I is the current through the outer contacts, V the voltage drop at the inner
contacts, and d the distance between two contacts.

For the van der Pauw method, a thin sample of any shape is used. Here the only
requirement is that it should be singly connected, meaning it should not have any
holes. Four contacts are applied close to the edge, as indicated in Figure 8.15. The
resistivity is then calculated using the equation

𝜌 = πd
ln 2

R12,34 + R23,41

2
f
(R12,34

R23,41

)
(8.105)



286 8 Electrons Moving in Solids

3

2

1

4

Figure 8.15 Van der Pauw method for conductivity
measurements. Notice that this holds for a randomly shaped
conducting film.

where d is the thickness of the sample and R12,34 is the voltage between contacts
1 and 2 divided by the current through contacts 3 and 4. R23,41 is obtained by
cyclic interchange of the contacts. f is a function of the ratio of the measured
resistances, which varies between 1 and 0.2 when R12,34/R23,41 is between 1 and
103. Tabulated data for f are found in van der Pauw’s original paper [16] as well
as in several handbooks [17].

A special case of the van der Pauw method is the use of a square sample with
contacts at the corners (Figure 8.15). Using symmetry arguments, we can rewrite
the van der Pauw relation above for the symmetric square:

𝜌 = πd
ln 2

R12,34 (8.106)

The anisotropy of quasi-1D materials poses special problems to transport mea-
surements. All the above methods have been developed for isotropic materi-
als, and the influence of anisotropy has to be carefully evaluated in each case.
The most straightforward procedure to assess the anisotropy of the conductivity
involves cutting out two thin long strips of a stretched polymer film, one parallel
and one perpendicular to the stretching direction. These strips are then placed
in a sample holder like the one shown in Figure 8.16. A small misalignment will
not significantly influence the determination of 𝜎perpendicular. However, in 𝜎parallel,
we will mainly record the contribution of misaligned 𝜎perpendicular regions. H.C.
Montgomery [18] published a procedure to deal with anisotropic samples more
accurately. (In Chapter 2 a notorious anisotropy pitfall was already mentioned in
context with the quest for high-temperature superconductivity in TTF–TCNQ.)

Figure 8.16 Square sample method to measure the
conductivity.
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8.4.2 Conductivity of Small Particles

The physics of 1D materials often require measurements to be carried out on
microstructure contact arrangements. In some cases the samples might just be
of some micrometers in size (growing larger crystals was not successful), in others
the samples are inhomogeneous, and conductivity microprobes should be applied
at different parts of the sample. For these purposes a pattern of microcontacts can
be arranged on top of a substrate by lithographic processes, and the sample is then
laid over the contacts. For a thin film of a conducting polymer, it is often sufficient
to wet it in an organic solvent and to lay it onto the structured substrate. After
drying it sticks tightly to the contacts. Figure 8.17 shows a microcontact arrange-
ment that was used to measure transport through a thin organic heterolayer of a
phthalocyanine and a perylene derivative [19].

In recent years, lithographic techniques, for the formation of contacts directly
onto nanoscale systems, have come into vogue. Electron beam lithography and
focused ion beam (FIB) writing have both been extensively used in the creation of
nanoscale versions of Figure 8.17. In FIB, an ionized beam of heavy atoms (such
as Gd) is created in an acceleration column and focused down to a tight (30 nm)
spot. A background metal–organic gas (a gas containing a metal such as Pt) is
introduced into the chamber, and the ions at the beam’s focus break down the
gas near the surface. This results in the deposition of the meal onto the substrate
in a very well-defined way. Unfortunately, it also frequently leads to damage to the
sample, since it is being bombarded with heavy ions. It also may contaminate the
sample, leaving some metals and neutral heavy atoms behind on the substrate.
Figure 8.18 is an example of how a single-walled carbon nanotube can be made
into a circuit element (“field-effect transistor (FET) configuration”)

Figure 8.17 Microcontact
arrangement for local
conductivity measurements.
The active area can be as small
as a few micrometers squared.

Bonding pads

Gold strips

Active areas

50
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Figure 8.18 A schematic diagram of the setup used for electrical transport measurements. Sze
1985 [20]. Reproduced with permission of John Wiley and Sons.

Electron beam lithographic techniques have the benefit of not damaging the
sample as severely. Unfortunately, in this technique, liftoff procedures require
that the position of the object of study be well known throughout several pro-
cedures of writing and deposition of metals. A clever way of doing this has been
worked out, however, that combines atomic force microscopy to determine the
positions of the samples on the substrate after they have been laid down. This
position is determined relative to larger “markers,” which can be easily imaged in
the scanning electron microscope used to do the writing [21]. Curiously, this leads
to another complication. What happens when the leads and contacts themselves
become as small as the sample? We have discussed contact resistance above;
however, this is far more subtle. As the leads from the outside world are “whit-
tled” down to create very small (almost atomic point) contacts with the sample,
localization, confinement, and back reflection of carriers might well be expressed
in the leads. Such circumstances must be analyzed in a far more formal way as
worked out by Landauer and Büttiker, where the leads are included as part of the
measured system [12]. The actual application of this analysis has been discussed
extensively in several excellent texts [13].

8.4.3 Conductivity of High Impedance Samples

In high resistivity samples it could happen that leaks in the insulation of the cables
are measured rather than the resistance of the sample. It is also possible that the
current passes along a humidity layer on the sample surface instead of through
the inside of the sample. This source of error can be avoided by using a guard ring
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Central top electrode
Guard ring electrode

Sample

Figure 8.19 Guard ring method for high resistivity samples.

electrode as indicated in Figure 8.19. The central electrode and the guard ring are
at the same potential so that no current flows between these two leads and the
current between the guard ring and the back electrode does not pass through the
ammeter. Many commercial electrometers are supplied with triaxial cable so that
the guard can extend into the cable. Complications may arise from the time con-
stant. If the capacitance of the cable is 10 pF and the sample resistance is 1012 Ω,
the RC time constant is already 10 seconds, i.e. it takes 10 seconds to charge the
cable capacitance. This excludes the application of a lock-in technique. During
simple DC measurements on high-resistance samples, on the other hand, space
charges build up easily from slow electron trapping and detrapping processes, so
that the interpretation of the experiment is by no means straightforward.

8.4.4 Conductivity Measurements Without Contacts

A very serious problem arises from the fact that many materials can only be
obtained as powders. The synthetic chemist normally presents a flask with a black
powder at the bottom to his physicist friend to find out whether the substance is
“interesting.” Only for interesting substances the efforts of growing single crys-
tals are worthwhile. Powders have to be compressed to pellets, and transport in
pellets is usually not dominated by the bulk properties but by the grain walls,
which can either act as low conductivity blockades or as high conductivity carrier
accumulation regions.

Many polymers can be formed into films. In fact, physicists did not become
aware of polyacetylene when it was first synthesized as a powder by Natta in
1958 [22]; it only became famous 16 years later, after Shirakawa had prepared
films [23] – as history tells, by a postdoc’s mistake in the directions for the cat-
alyst concentration. Although conducting polymer films look smooth and shiny
to the eye, their morphology is far from being a physicist’s pleasure, as we see in
Figure 8.20, a typical thin conducting film used in organic solar cells.

For reasons of contact and powder problems, methods not using contacts have
been proposed to determine the conductivity. Most important in this respect is
the resonance perturbation of a microwave cavity [24]. The sample is put into a
small glass tube that is inserted into a microwave cavity. Microwave absorption
in the sample changes the Q-value of the cavity and the resonance frequency.
From these two parameters, the conductivity of the sample can be evaluated. Of
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Figure 8.20 A TEM image of
lamella formation in a highly
conductive P3HT/PCBM blend.
This shows the complexities and
heterogeneities of the pathways
within a conducting polymer thin
film. The image is 10 nm× 10 nm.
The film is a few nanometers
thick. Courtesy: Wanyi Nie, Wake
Forest University.

course, the conductivity at microwave frequency (e.g. at 1010 Hz) is not neces-
sarily identical to the DC conductivity. Indeed, if conductivity takes place by a
hopping mechanism, large differences have been observed as would be expected
[25]. At even higher frequencies the conductivity can be determined from optical
absorption [26] (“optical conductivity”):

𝜎 = 𝜔𝜀2∕4π (8.107)

where 𝜀2 is the imaginary part of the dielectric function.

8.5 Complications: Localization, Hopping, and General
Bad Behavior

The resistivity is a material constant that can be calculated from the resistance
when the sample geometry is known. In very thin wires at low temperatures, a
new feature occurs: the resistivity depends on the sample geometry, in particular
on the length of the sample. We might have guessed this from our simple intro-
duction to LB theory. Chaudhari and Habermeier [27] prepared very thin (50 Å)
and narrow (700–5000 Å) strips of the amorphous alloy W–Re, some 100 μm
long. Current leads at the ends and six voltage probes along the wire were applied,
as shown in Figure 8.21. The experiment demonstrated that the total resistance
of the sample is larger than the sum of resistances between the various leads. In
Figure 8.22 the excess resistance is plotted vs. the sample length. The excess resis-
tance represents the amount by which the total resistance exceeds the sum of the
partial resistances. The sample length is measured by the total resistance, which
reaches up to some 3 MΩ. An excess resistance of 3 kΩ consequently corresponds
to an effect in the order of 10−3.
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Figure 8.21 Schematic arrangement
of current leads and voltage probes in
an experiment to measure excess
resistances as a consequence of
localization.
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Figure 8.22 Length dependence of resistance of high-resistance samples measured at 4.2 K.
Source: After Chaudhari and Habermeier [27].

The observed excess resistance is interpreted in terms of localization [28]. As
already pointed out, the periodicity of the crystal potential is a necessary con-
dition for the existence of Bloch waves. Bloch waves are extended states, delo-
calized all over the crystal. Occasional defects in a three-dimensional lattice can
be treated as scattering centers, giving rise to an ohmic resistance. With many
defects, however, the entire concept of Bloch waves fails, and all states in the
solid become localized [29]. Between the localized states the electrons move by
phonon-assisted tunneling (hopping). At low temperatures when the phonons
are frozen, the materials act as insulators. We can quantify the disorder in a crys-
tal by introducing the parameterΔ as average fluctuation of the crystal potential.
If, in a three-dimensional crystal, Δ becomes comparable to the bandwidth, all
states become localized: the Anderson–Mott transition.

The lower the dimensionality, the less disorder is needed to localize the elec-
tronic states. In strictly 1D systems, any finite Δ will localize all the states. Since
there is always some disorder present, all 1D conductors should become insula-
tors at absolute zero. The localization experiment as shown in Figures 8.21 and
8.22 was carried out at a finite temperature (4.2 K) and on a sample of finite
cross section. The observed excess resistance is interpreted as a precursor to the
metal-to-insulator transition.

We now give a hand-waving argument for the excess resistance: excess resis-
tance means that the resistance increases faster than linearly with increasing
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sample length. Theory predicts that it should increase exponentially. If we think
of defects as semitransparent mirrors rather than colliding spheres, the exponen-
tial decrease of an incoming intensity becomes evident. How could we even have
thought that the resistance would increase linearly! In higher dimensionality the
electrons can bypass obstacles, and their mirror properties are less pronounced.

How thick must a wire be so that excess resistance can be observed? Thouless
[30] has introduced the concept of “maximum metallic resistance in thin wires.”
There is a maximum resistance a metallic wire can achieve. Whenever the wire
is sufficiently long or thin or disordered so that the resistance exceeds a critical
value, the wire will not be metallic anymore – it will be insulating in the sense
that at absolute zero the resistance will be infinite.

How large is the critical resistance? Since it is independent of the material and
of its geometry, it can only be a combination of natural constants. It is not diffi-
cult to guess that the quantum of electric charge e and the mechanical quantum
h will be involved. The combination ℏ/e2 has the dimension of the electrical resis-
tance and a value of about 4 kΩ. Thus, whenever the resistance of a wire is greater
than some 4 or 10 kΩ, the wire is insulating at T → 0! (Note that here we are
content with an order-of-magnitude consideration. However, ℏ/e2 is the famous
von Klitzing constant, which in the quantum Hall effect can be determined up to
eight significant figures. Multiplied with the velocity of light,ℏ/e2 is the reciprocal
fine-structure constant 1/𝛼 = 137.036, the keystone of quantum electrodynam-
ics.) We saw this previously in association with basic transport theory.

Let us now take a closer look at polyacetylene. The conductivity of highly
conductive polyacetylene is about 105 S/cm. For a single polymer chain, we
assume the cross section to be 1 Å2. Using the equation above a resistance of
104 Ω for a polyacetylene chain of 10 Å length is obtained! Thus individual,
noninteracting molecular chains will be insulators, not conductors. In the
next chapter it will be demonstrated that polyacetylene samples are neither
single crystals nor well-separated individual chains but spaghetti-like bundles
of chains (fibrils). Figure 8.23 shows such a spaghetti network schematically.
A fibril consists of about 100–1000 chains, and its resistance will be some
107–108 Ω/cm (if highly doped). A fibril of 1 μm length will have a resistance of

Figure 8.23 Schematic view of the fibrillar structure
of a polymer. The rings indicate the interfibrillar
cross-links. Source: After Prigodin and Efetov [31].
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1–10 kΩ and so will be close to the metal-to-insulator transition. The meshes in
the network (Figure 8.23) are about 1 μm wide. The interfibrillar contacts will
favor the metallic behavior. Prigodin and Efetov and others [31] have studied the
metal-to-insulator phase diagram of a fibrillar network by varying the resistance
in the fibers and the interfibrillar contacts.

8.6 Summary

We have presented several detailed methods of understanding electrical trans-
port in well-behaved systems. From the extremely simple ideas of Drude or Boltz-
mann, many more complex phenomena may be derived. Of course, an impor-
tant message of this section is that ideas of resistance or conductance cannot be
scaled down to small dimensions. A very thin wire behaves differently than a thick
wire, and a monomolecular chain is not a molecular wire. This has to be kept in
mind when speaking of polymer chains connecting molecular devices in a way as
macroscopic wires connect transistors.

Exploring Concepts

1 Surface Resistance for Drude Models: Consider the square sheet of conduc-
tor L× L× d. It has a resistivity 𝜌. The surface or sheet resistance is measured
between two opposite edges of the sheet, ignoring the effects of the contact:
R◽ = 𝜌L/Ld = 𝜌/d. This is expressed in terms of ohms per square (thus the
little subscript square), and it is independent of L2 (Figure EC8.1).

(a) Using the expression for the conductivity in the Drude metal, show that
R◽ = m/nde2

𝜏 .
(b) Now assume that the minimum time between scattering events is just the

time it takes the carrier to travel between the upper and lower faces of
the slab. That is, consider the case where the surfaces provide the primary
source of scattering. This means that 𝜏 ∼ d/vF, where vF is the Fermi veloc-
ity. Write down the maximum surface resistivity R◽ and explain why this is.

(c) Finally calculate this for a sheet of metal atoms, one atom thick (∼4 kΩ/◽).

2 Phonons and Resistance: In real metals, measured resistance is strongly
affected by electron–phonon scattering. Clearly, the more phonons one has,
the more flowing electrons will scatter into different directions other than
the original path, and thus the more apparent resistance one has: it takes
longer for the electrons to make it from electrode to electrode since they
have a longer path to travel.

Figure EC8.1 A thin film of metal.
The electron flows through the solid
with occasional scattering.

L

L
d
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Table EC8.1 A 100Ω Pt resistor.

T (K) R (𝛀)

14.0 1.797
20.0 2.147
30.0 3.508
40.0 5.938
50.0 9.228
70.0 17.128
100.0 29.987
150.0 50.815
200.0 71.073
300.0 110.45
400.0 148.62
1000.0 353.402

(a) Previously we made some simplifications in the relaxation rate of scatter-
ing wherein we considered this to be a constant. Now let’s make an equally
simple assumption that it is not a constant but instead depends on the
number of scattering phonons present in a given sample and some temper-
ature T . In this case show that it is reasonable to expect that the scattering
relaxation time should go linearly with the number of phonons, Nph.

(b) However, Landolt and Börnstein [32] worked this problem in more detail,
taking into account all the angles into which the electrons could be scat-
tered. They showed that the resistivity could be written as

𝜌 ∼ T
ΘD ∫

T∕ΘD

0

z5dz
(ez − 1)(1 − e−z)

whereΘD is the Debye temperature. This is known as the Bloch–Grüneisen
formula. Using this fact, Pt is often used as a low-temperature thermome-
ter. For a 100Ω Pt resistor (with a Debye temperature of around 230 K),
the following table is given for the resistance in Table EC8.1.
Show that the B–G equation above provides an excellent fit to this data. At
what temperature would you estimate the usefulness of this type of ther-
mometer might cut off in temperature?

(c) Give a quick estimate of how the dimensionality in a carbon nanotube
might change this result.

3 Two-Component Models: As you may already know from the two-fluid model
of superfluid He flow, a multicomponent picture of a system with complex
behavior can be a very handy description. Generally, systems described in this
way must be in thermodynamic regimes where there is some intimate mixing
of a material’s phases taking place such as in phase transitions and not at the
extremes of stability.
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The utility of such descriptions in these regimes is quite simple: different
properties can be ascribed to the different individual components of the sys-
tem. When the system’s properties are measured, we see the combined ther-
mal average of the different components. This allows us to “mix” properties
that are seemingly incompatible. As in the case of the superfluid where it can
mainly act as a fluid with no viscosity but still share some interaction behav-
iors with some experiments, it is a mixture of the superfluid and a normal
fluid.
Now let’s take this model idea and apply it to conducting sets of charge carri-
ers. Consider a conducting solid that has two distinctly populations of charge
carriers. One population is electrons with q = e−, m = me, and an overall
scattering relaxation time of 𝜏e. The second population is holes with q = e+,
m = mh, and relaxation time 𝜏h.

(a) Using the Drude approximation (i.e. no interaction between the carriers
other than hard sphere scattering), calculate the magnetoresistance and
the Hall coefficient for applied field H. You will have to do this in terms of
the concentrations of the charge populations: ne and nh.

(b) In an undoped semiconductor we use n = n0exp[−Δ/kT] to describe the
temperature dependence of the carrier concentration. In the model of part
(a), describe the temperature dependence of the magnetoresistance and
the Hall coefficient.

(c) Now as a little more of a challenge, what would you suspect the result
might be, and how would it differ from the Drude two-component model,
if we were to allow a small amount of carrier to carrier electrostatic inter-
action? Think in terms of statistical fluctuations of density.

4 Thermionic Emission: Consider a thin conducting channel oriented such that
the axis of current flow is in the positive z direction. If we place this within
the context of the ballistic transport model (LB-like), then we can write
for the total current

J = −
q

4π3 ∫kz>0
d3k

ℏkz

m∗ f (k)[TL(k) − TR(k)]

kz is in the direction of current flow (z) and TL/R express the transmission
probability as the carrier is heading to the left or right, respectively. Typically,
TL =TR, but certainly not always. Applied fields, heterogeneity, etc. can make
the two terms quite different.

(a) Now consider the case of a device in this ballistic regime such that the
below is true (Figure EC8.2):

TL(k) =
⎧
⎪
⎨
⎪
⎩

0 if ECL +
ℏ

2k2
B

2m∗ < E0

1 if ECL +
ℏ

2k2
B

2m∗ > E0
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Figure EC8.2 A conducting channel with metal contacts on either side. At the contact region
there is a contact barrier.

TR(k) =
⎧
⎪
⎨
⎪
⎩

0 if ECR +
ℏ

2k2
B

2m∗ < E0

1 if ECR +
ℏ

2k2
B

2m∗ > E0

Show that

J = −
qm∗kBT

4π2ℏ3 ∫

x

E0

dE ln 1 + e−(E−EFL)∕kBT

1 + e−(E−EFR)∕kBT

(b) For large barrier heights, show that this reduces to the famous Richardson
equation

J = J0(eqV∕kBT − 1)

J0 = −
qm∗(kBT)2

2π2ℏ3 e−(E−EFR)∕kBT

(c) What are the physical meanings of these equations?

5 Conductivity in Tight Binding: Consider the two-dimensional system with a
square lattice (lattice parameter a) and a conduction band given by the tight
binding approximation

E = E0 + E1(2 − cos kxa − cos kya)

Now consider the case where the relaxation time constant 𝜏 is a constant. This
means it does not depend on electron momentum or energy. Moreover, the
bands are half filled, so this is a metal.

(a) Using the solutions to the Boltzmann equation discussed above, compute
the conductivity tensor of this band.

(b) Now compare this result with the Drude model with the same electron
density. Discuss why these differences occur.
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Polarons, Solitons, Excitons, and Conducting Polymers

Part of a letter from Wolfgang Pauli to Rudolf Peierls: a copy of which can
be found at the coffee corner in the Max-Planck Institute for Solid-State
Research in Stuttgart. The relevant line reads: Der Restwiderstand ist ein
Dreckeffekt und in Dreck soll man nicht wühlen. (Residual resistance is a
“filth effect” with filth being something one should not rummage in.)

In Chapter 8, we introduced the notions of basic transport. We described how
these notions were limited when the size of the structures began to approach that
of the wavelengths of the carriers flowing in them. Interactions in this picture of
transport were described phenomenologically as scattering events that led to the
general relaxation of the system. However, there is a second type of interaction
that should be considered: correlation and coupling. These are interactions that
do not act over short times relative to the movement of the carrier as in the relax-
ation time approximation, but instead, we can imagine them to take place over
the entire path of transport. There is a large catalogue of examples, from super-
conductors, to mott insulators, to charge density waves (CDWs), and more. In this
chapter we consider an example that is of growing technological importance: the
conducting polymer.

We originally introduced conducting polymers as an example of one-
dimensional conducting behavior. However, in the polymer’s case, the carrier
and the lattice are strongly coupled in a way not covered by our previous
scattering theory discussions. Roughly, what this means is that the charges and
phonons of the system move about together. Now that we know a little more
about basic electronic transport, we are in a better position to understand what
this coupling in the polymer system might mean.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Tradition says that Confucius was once asked to name the duties of a good
king or ruler. “First of all, put terminology in order”, the master replied.

First we should make sure the language of our conducting polymer discussion
and that on crystalline systems is the same (or at least correlated):

1. Most conducting polymers are not good electrical conductors when
chemically pure. They are insulators or, at best, semiconductors. Only after
treatment with oxidizing or reducing agents do they become conductors.
This procedure is called doping, and this is in direct analogy to the term
introduced previously in semiconductor physics.

2. In semiconductor physics, undoped semiconductors are intrinsically conduct-
ing and doped semiconductors extrinsically conducting. In contrast, doped
polymers are often referred to as intrinsically conducting polymers. This is
to distinguish them from polymers that acquire conductivity by loading with
conducting particles, such as carbon black, metal flakes, or fibers of stainless
steel or carbon nanotubes. These intrinsically conducting materials are also
called conjugated polymers or synthetic metals.

3. Polymers that conduct because they are blended with a percolating network
of micro- or nanowires are called matrix composites or sometimes nanocom-
posites as we saw before. They are said to be loaded with the nanophase, not
doped.

4. Finally, as we will learn from this chapter, polymers do not conduct using
“bare” electrons flowing about; rather they have charge bound to local
lattice distortions. Based upon properties such as spin symmetry and charge,
these will have a variety of names – soliton, exciton, polaron, bipolaron,
etc. – usually some sort of “-on.” The names are all meant to emphasize the
single-particle nature of the coupled excitation.

As you might have guessed, a detailed treatment of this field is a little beyond
an introductory presentation such as ours. And there is already enormous
amount of specialist literature on conducting polymers (together with their
close cousins the conducting organic small molecule). For instance, a standard
in the field is Electronic and Optical Properties of Conjugated Polymers by
William Barford (Oxford University Press). Skotheim’s Handbook of Conducting
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Polymers [1], the Springer publication [2] edited by Kiess, and Przyluski’s [3] and
Chien’s [4] monographs also provide excellent insight and historical context.
As we have already discussed, the matrix composite approach falls between a
one-dimensional and three-dimensional system somewhere, and there is a book
devoted to nanoparticle-loaded conducting polymers1 published by Mair and
Roth [5]. Finally, it can be instructive to examine the series of International
Conference on Science and Technology of Synthetic Metals (ICSM) proceedings,
the Kirchberg International Winterschool on Electronic Properties of Novel
Materials (IWEPNM) volumes [6], the proceedings of the Polish Autumn
Schools [7], the NATO Advanced Study Institute in Burlington [8], and the
Lofthus meeting [9].

Wow! And with all of these, it is a bit surprising that most presentations and
texts fail to give a good visual model for exactly how the polymer conducts charge.
So let’s see if we can make a little headway on that in this chapter – that will be
our goal. We will begin with the famous Peierls transition, a lattice instability.
From there we introduce an electron–lattice coupling mechanism based on such
instabilities leading to domain walls, solitons, polarons, and excitons. Finally, we
touch briefly upon the effects of electron correlation for these systems. This type
of introduction borrows heavily from review articles published by Roth and Bleier
[10] and by Heeger et al. [11], as well as the monograph published by Lu [12].

9.1 Distortions, Instabilities, and Transitions in One
Dimension

In our previous examples, electrons in a solid interacted with moving atomic
positions. So the periodicity of the potential experienced by the electrons is that
of the lattice modulated by the waves of the atoms upon those sites (the Bloch
waves of the phonons). But this problem is different in three dimensions than
in lower dimensions. In 3D, atoms are highly coordinated and held in position
by bonding forces exerted from the surrounding neighbors. In one-dimensional
solids, atoms have only two neighbors. Consequently in one dimension, lattices
become very soft compared with 3D counterparts.

9.1.1 Coupling Charge with the Lattice

In Figure 9.1 we show the simplified schematic structure of polyacetylene
(extended chain instead of zigzagged, with a bond angle of 180∘ instead of 120∘).
In polyacetylene single and double bonds alternate, and these bonds keep the
carbon atoms in their position. Double bonds are stronger than single bonds
(although not twice as strong), and consequently the bond length of a double
bond is shorter than that of a single bond. Splitting a single bond means breaking

1 As an interesting side note, when the nanophase or interphase of a matrix approach interacts with
the host polymer through doping, it can create a two-carrier system. And just as in the case of the
two fluid model for superfluids, such electroactive matrix composites provide an interesting proving
ground for fundamental physics.
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Figure 9.1 Bond scission in polyacetylene demonstrates the strong electron–lattice coupling
in one-dimensional solids. Raising the electron of a double bond into an excited antibonding
state causes strain within the polymer’s one-dimensional lattice.
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Figure 9.2 Here the two configurations of bianthrone demonstrate the complicated example
of electron–lattice coupling. Absorption of light can create an electronic transition that effects
local bonding introducing strain. Such mechanisms have been proposed for molecular-scale
memory systems.

the chain. If one part of a double bond is cleaved, the double bond will be
weakened by the transformation into a single bond. As a result the lattice will be
distorted due to the lengthening of the respective interatomic distance.

A chemist or a molecular physicist would not be surprised by the large lattice
distortion. If there is any surprise at all, it is because of the solid-state terminology.
Cleaving a double bond – for example, by the absorption of light – means raising
the molecule into an excited state (note that the chemists speak of molecular
states, whereas in all previous chapters we used the term electronic states, which
the chemist would call orbitals). The shape of the molecule in the excited state is
different from its configuration in the ground state. For solids, this configuration
corresponds to the crystal lattice.

An example of this excited state – lattice coupling – is illustrated in Figure 9.2.
Here a bianthrone molecule is shown, which twists and folds when changing state
[13]. In the field of molecular electronics (the use of organic materials to beat
silicon in device miniaturization), this principle comes into play. Such coupling
might help to better localize excitations; thus smaller devices should be pos-
sible. In this respect, electron–lattice interactions in organic components are
often referred to as coupling to conformational degrees of freedom. Excitations
would be confined to a molecule, which will extend over some 10 or 20 Å (the
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oxygen–oxygen distance in bianthrone is 11 Å). We will discuss solitons as an
example of such localized excitations.

9.1.2 Peierls Instability

An important case of electron–lattice coupling is the Peierls distortion (or
instability). This lattice distortion belongs to a more general class of symmetry
breaking or degeneracy lifting transitions, for which the Jahn–Teller effect stands
as the prototype. In 1955 Peierls [14] showed that the specific example of a chain
of equally spaced metal atoms is unstable and will spontaneously undergo a
metal-to-insulator transition at low temperatures.

As an example, consider a linear equidistant arrangement of sodium atoms as
in Figure 9.3. In this case the atoms readily contribute one outer shell electron to
delocalization and dynamics while effectively screening the core potential with
the rest of its electrons. This is true in a number of atomic species we might
choose. The Gedankenexperiment, of course, cannot be realized since sodium
atoms will naturally not arrange in chains. They tend to form clusters when tossed
together. To keep them in line, like beads in a necklace, some sort of a string
to thread them would be necessary. That is not so easy and requires a lot of
chemistry. Actually all the chemistry in Chapter 2 is just an attempt to approach
this idea.

So, although we cannot synthesize an isolated chain of equidistant monatomic
sodium, it is possible to calculate the electronic dispersion relation and the elec-
tronic density of states (DOS) as we have already seen. Because of the extreme
delocalization expected of such a system, we expect a close approximation to
the nearly free electron model. Thus we have an “S”-shaped dispersion relation
approaching a parabola on both sides near the Brillouin zone (BZ) center and
flattening out at the BZ edges as in Figure 9.5. The DOS has square root singu-
larities at the top and at the bottom of the band, which are of no significance in
this context. The band is half-filled because each sodium atom contributes one
delocalized electron to the solid, and two electrons – spin up and down – can be
accommodated in each state. The Fermi wavevector kF is halfway between 0 and

Figure 9.3 Alkali atoms do not arrange
in chains but prefer to form clusters.
One might argue that we could use
templates, say, the step edges of a Si
surface, perhaps, to align the atoms
against. But again the stabilizing forces
due to surface–chain interactions might
interfere with electron flow so we
wouldn’t have a truly 1D conductor. Of
course, CH• radicals can be lined up on
the σ-bonded backbone of a polymer,
like beads on the string of a necklace.



306 9 Polarons, Solitons, Excitons, and Conducting Polymers

π/a, and the Fermi energy EF is at the band center. There is a finite DOS at the
Fermi level, N(EF)≠ 0. To calculate the total energy of the electrons, we have to
sum the overall electron states up to EF.

Now we call for a Maxwell’s demon that arranges the atoms in pairs. It displaces
every second atom by the amount 𝛿, so that the atoms are no longer equidistant;
the short distances a − 𝛿 and long distances a+ 𝛿 alternate. Again the arrange-
ment is periodic but with repeat distance 2a instead of a. Consequently, the recip-
rocal lattice changes from a∗old = 2π∕a to a∗new = π∕a. In the former lattice the
border of the first BZ was at π/a; now it is at half that distance, just at the Fermi
wavevector kF . The former lattice caused the electrons to have a gap at π/2a. The
demon has transformed the system from a metal with no gap at the Fermi level
into a semiconductor with a gap. All states below the gap are filled at absolute
zero and all above the gap are empty.

If the demon then leaves, will the system stay semiconducting (or insulating
depending on the gap), or will it relax and return to the undistorted lattice? It is
easy to see that in the distorted case the electronic energy is lower, because the
states in the gap have been accommodated above and below the gap (states cannot
disappear; there are as many states as atoms in the lattice, because the states are
formed from atomic orbitals). Consequently, when summing the electronic ener-
gies from zero to EF, it shows that the creation of the gap had reduced the elec-
tronic energy. But to achieve this, the demon had to exert work: there are springs
between the atoms; the demon has alternately compressed and expanded them.

Let’s examine this in more detail. We begin by noticing that in the region
of the Fermi energy, the dispersion curve looks like the free electron system
𝜀 = ℏ

2k2/2m*. At this point the electrons behave as though they have an
“effective mass” and a uniform background of ionic potential. As our demon
acts, it introduces a strain to the bonding “springs” between atoms. We use a
very simple expression for this (though more complicated expressions could be
chosen):

Emech = s𝛿∕2 = Y 2𝛿2∕2 = Ye2 (9.1)

where s is the stress in the spring, Y is the Young’s modulus, and 𝛿 is the over-
all strain the demon introduced. The introduction of this 𝛿 results in a periodic
modulation of the background potential – which at this point on the dispersion
curve we are treating as a constant U0(x) = 0. We don’t know exactly how much
of a change in the potential will result since electrons will redistribute themselves
slightly, but a simple approximation might be given by

U(x) = 2A cos π x∕a = 2A cos 2kF x (9.2)

This is about the simplest formula we could use. Notice that A depends a bit
on how much the system will rearrange its electrons around the atomic site. It
is sometimes called the coupling constant and describes the coupling between
electrons and phonons (lattice distortions). The resulting band structure is given
above in Figure 9.5b. The bandgap that occurs is easy to compute:
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Egap = 2A𝛿 (9.3)

Clearly, as we have already argued the energy of the electronic distribution is
lowered (the topmost energy went down by 2A𝛿), but this came at the cost of
Emech. To see if it was “worth it”:

E(𝛿)total = E(𝛿)mech + E(𝛿)electronic (9.4)

The minimum occurs:
dEtotal

d𝛿
= d

d𝛿

[

∫
E(k, 𝛿, A)dE + Y𝛿2

]
= 0 (9.5)

This is referred to as a master equation and the integral is worked from 0 to
kF . This equation either has a solution for a choice of 𝛿 or it does not. If it does,
this means the Peierls distortion of the lattice will occur and be stable because it
is energetically favorable. The gap may be arbitrarily small, but there will be one.
For our simple model of distorted potentials, it so happens that there is a solution:

𝛿 =
ℏ

2k2
F

Am∗

[
sin h −

ℏ
2kFπY

4m∗A2

]−1

(9.6)

Manipulating this around a little, making some guesses about the range of
A, and so on, we can estimate that the argument of the sin h term is ≫1. Thus
Eq. (9.6) can be estimated by

𝛿 ≫

ℏ
2k2

F

Am∗ exp
ℏ

2kFπY
4m∗A2 (9.7)

This is a rather interesting equation since it comes up in a number of physical
problems. Particularly it appears in superconductivity, which is a peculiar form
of Peierls transition.

The analysis shows that the electronic energy is approximately linear in 𝛿,
whereas the elastic energy depends quadratically on 𝛿. For sufficiently small
displacements, the gain in electronic energy dominates the elastic term. Conse-
quently, under Peierls assumptions, there is always a gap at absolute zero. How
large it is and at what temperature enough electrons are excited to cross the gap
so that it becomes ineffective depend on the parameters of the system (spring
constants, bandwidth, etc.). As a result the demon is allowed to leave. We don’t
even need the demon to start the Peierls distortion. At low enough temperatures
the system will know (by fluctuations) that it gains energy upon distortion and
thus it will distort. Electron–lattice coupling will drive the one-dimensional
metal into an insulator.

This is exactly the situation we have for conjugated carbon, such as a
polymer. The Peierls instability can have rather large effects. Typically such
systems can have strain-related bandgaps ≫1.6 eV. It is important to realize
that this comes from a modification of bonding orbitals. Here, polymers (that
have an orbital to delocalize) become conjugated – alternating single and
double bonds.



308 9 Polarons, Solitons, Excitons, and Conducting Polymers

9.1.3 Results of Peierls in Real Systems

9.1.3.1 Phonon Softening and the Kohn Anomaly
The monatomic metal chain of Figure 9.4 exists only in a Gedankenexperiment.
Real one-dimensional metals are more complicated, as we have seen in Chapter 2.
The Peierls transition, however, has been observed in several systems (for a review
article, see [15]). What would evidence for this look like? In Figure 9.5, the effects
of the Peierls distortion are shown: the giant Kohn anomaly in KCP.

The restoring force stabilizing the equidistant lattice decreases, and the respec-
tive phonons become softer. These are phonons with wavevector 2kF . In KCP
the conduction band is not half filled as it would be for ideal alkali chain. There
is charge transfer from the platinum chain to the bromine ions and band filling
is more complicated. Therefore in Figure 9.5 the wavevector 2kF does not cor-
respond to the border of the first BZ as it would in the alkali chain. Figure 9.5
shows what to expect from an inelastic neutron scattering experiment on the
alkali chain: the zone-end phonons soften and finally condense into a new lattice
point at π/a. Therefore the BZ have to be altered. From the segment between π/2a
and π/a, we can subtract a lattice vector of the new reciprocal lattice and transfer
the whole segment to the left-hand side of the origin.

The soft phonon at 2kF also corresponds to the requirement of energy and
momentum conservation in electron–phonon scattering. This pronounced
electron–phonon scattering is the high-temperature precursor of the Peierls
transition. Energy conservation requires that only electrons at the Fermi surface
are involved: the Fermi energy is much larger than the phonon energies and
so only quasi-elastic scattering processes can occur. The Fermi surface of a
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a – δ a + δ

Figure 9.4 Peierls distortion of an isolated chain of equidistant monatomic sodium. The
density of states and the band structure for an idealized and perfectly spaced chain is shown
above. Below shows those same things only for the chain with an alternating distortion.
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The phonon dispersion in the first
Brillouin zone for a nondistorted
lattice. This is what you would get for
a chain of equally spaced Alkali atoms.
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Figure 9.5 Phonon dispersion and Kohn anomaly in a hypothetical inelastic neutron
scattering experiment on an ideal monatomic alkali chain: (a) before distortion and (b) after
distortion.

one-dimensional metal consists of two planes perpendicular to the metal chain.
The phonons scatter the electrons from one plane to the other; this means they
just reverse the electron momentum, from +kF to −kF and vice versa. Such
momentum flipping is called an umklapp process, as we have seen. If a phonon
wants to change the electron momentum from +ℏkF to −ℏkF , it must have the
wavevector 2ℏkF .

Electronic umklapp processes play an important role in the theoretical
limit of the conductivity of polyacetylene. In an ideal polyacetylene crystal,
electron–phonon scattering is again umklapp scattering, and this scattering is
the only contribution to electrical resistivity in an ideal one-dimensional crystal.
In the alkali metal chain, the 2kF phonons become soft and drive the system from
metal to insulator. If the softening is blocked by some other interaction, the 2kF
phonons can be frozen out at low temperatures, and there is no contribution to
resistivity, thus turning the metal into an ideal conductor at T = 0 (but not into
a superconductor, which would require a collective state and a finite transition
temperature T > 0, not simply vanishing resistance at zero temperature).

9.1.3.2 Fermi Surface Warping
In an ideal one-dimensional metal, the Fermi surface consists of two parallel
planes. If it is less ideal and some interaction to adjacent chains occurs, the Fermi
surface “tries” to become spherical or cylindrical – it bends. Figure 9.6 shows the
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Figure 9.6 Warped Fermi surface of a
one-dimensional metal with slight
two-dimensional character.

kb

ka

Figure 9.7 Projection of
warped Fermi surface and
“nesting.”

warped Fermi surface of a system that has a slight
two-dimensional admixture. In Figure 9.7 a projec-
tion of the warped Fermi surface is given. This allows
us to demonstrate the concept of “nesting,” which
makes quasi one-dimensional metals look more
one-dimensional than expected. Umklapp processes
scatter electrons from one sheet of the open Fermi
surface to the other. With parallel sheets all umk-
lapp processes involve parallel vectors of momen-
tum transfer. In the case of a spherical Fermi surface,
there are no parallel transfer vectors. If the surface
is appropriately warped, however, there are some or
even many parallel transfer vectors, as indicated by

the arrows in Figure 9.7. In that case phonons moving along the chain can flip
the electron momentum by conserving the projection of the momentum onto the
chain. If there are “enough” such parallel transfer vectors, the Peierls transition
can occur even if the Fermi surface is not planar. Peierls transition and nesting
play an important role in CDW phenomena as we shall see.

9.2 Conjugation and the Double Bond

From organic chemistry we know several types of double bonds: isolated,
cumulated, and conjugated. Conjugated means double bonds separated by
single bonds. Looking at Figure 2.28 we notice strict alternation of double
and single bonds in all polymers shown (with the exception of polyaniline).
But in polyaniline there is an extra electron pair on the nitrogen atoms and
“conjugation passes through these extra pairs.” Conjugated double bonds behave
quite differently from isolated double bonds. As the word implies, conjugated
double bonds act collectively, “knowing” that the next nearest bond also is a
double bond. To stress this, a colleague once quoted the Chinese proverb: “You
pull a hair and you excite the whole body!” [16] (Figure 9.8).

The conjugation of bonds is a defining characteristic of conducting polymers.
To discuss the physics of conjugated double bonds, we look at the conjugated
polymer with the highest symmetry: polyacetylene. In the Gedankenexperiment
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Figure 9.8 “You pull on a hair and
you excite the whole body.” In a
conjugated polymer, a double
bond “knows” that next nearest
bonds are also double bonds.

H2
H2 H2 H2 H2 H2

H2 H2 H2 H2 H2

Polyethylene
(poly-CH2)

H H H H H H

H H H H H

Dehydrogenation

Poly-CH

Figure 9.9 Gedankenexperiment, producing polyacetylene by dehydrogenation of
polyethylene. In the first step a chain of CH• radicals is obtained analogous to a chain of alkali
atoms.

of Figure 9.9, polyacetylene can be prepared from polyethylene, which is the
simplest of the saturated linear chain polymers (saturated organic compounds
are those without double bonds). Polyethylene is a zigzagging chain of carbon
atoms with two hydrogen atoms per carbon atom. Removing one hydrogen from
each carbon would leave us, in a first step, with unbonded electrons everywhere.
We would obtain a chain of CH⋅ radicals. A CH⋅ radical has some similarity with
an alkali atom: both have an extra electron. The poly-CH⋅ chain in Figure 9.9
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Peierls transition

Metallic state
(electrons
delocalized)

Insulating state
(conjugated
double bonds)

Figure 9.10 As in alkali metals the electrons of the CH• radicals will delocalize all over the
solid. The Peierls distortion will then lead to bond alternation.

Resonance

Figure 9.11 Electron delocalization in a
benzene ring to illustrate that “metallic
behavior” is not unexpected in organic
chemistry.

thus resembles the sodium chain. (In alkali metals the extra electrons are s
electrons. In a CH⋅ radical, the extra charge is a pelectron. For the discussion in
this chapter, the difference between s and p electrons does not matter.) At first
glance a metal could be expected, and it is not surprising that polyacetylene is
“the synthetic metal par excellence.” However from the previous discussion we
know that electron–lattice coupling will cause a Peierls transition and drive the
metal into an insulator, at least at low temperatures. (Later on, we will see that
doping suppresses the Peierls transition.)

In Figure 9.10 the “metallic state” of polyacetylene (top) and the transition to the
insulating state (bottom) are illustrated in a slightly different way. In the metallic
state the electrons are depicted as delocalized over the entire chain. The dashed
line should allude to the Bloch wave behavior of the electrons.

This kind of delocalization is not unfamiliar to the organic chemist and is found
in aromatic rings. Often delocalization is symbolized by “resonance structures”
(Figure 9.11). We note here that there are a number of polymer structures intro-
duced in Chapter 2 that seem to have a series of such rings connected by a bond-
ing structure of some sort.

So, unlike benzene, a sufficiently long, extended chain is not aromatic and a
metallic state will not actually be realized. In fact, an alternation of short and long
bonds will occur, as indicated at the bottom of Figure 9.10 (where short bonds are
drawn as double bonds and long bonds are single bonds). Due to this alternation,
there is a gap in the electronic DOS. All states below the gap are occupied and
form the “valence band”; the states above the gap are empty and form the “con-
duction band.” Chemists call these bands the π and π* bands. As we have already
seen in Chapter 6 on electronic structure, chemists might prefer an approach via
molecular orbitals rather than solid-state physics. Recall, the chemist might first
link two CH⋅ radicals to a (CH)2 pair with a double bond between the two CH
groups that consists of a 𝜎 and a π bond. (In a polymer chain, s electrons form 𝜎

bonds, and p electrons form π bonds.) There will be a bonding π and an antibond-
ing π* orbital. Forming a macromolecular chain with these (CH)2 pairs, the π and
the π* orbitals will split to give bands. What solid-state physicists call the “top of
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Figure 9.12 Optical absorption in
polyacetylene. Like a classical
semiconductor the sample is
transparent for light with quantum
energy smaller than the bandgap.
From the onset of the absorption, the
bandgap can be determined.
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the valance band” translates in chemical language to “highest occupied molecular
orbital (HOMO).” The “bottom of the conduction band” is then called the “low-
est unoccupied molecular orbital (LUMO).” The solid-state physicist starts with
a band, the width of which is given by the average interaction between single car-
bon atoms, and then bond alternation will open a gap; the chemist starts with the
gap, followed by broadening the π and π* orbitals through interaction between
carbon pairs.

The π–π* gap in polyacetylene is about 1.7 eV. This is well within the region of
known semiconductors such as diamond, 5.4 eV; GaAs, 1.43 eV; Si, 1.14 eV; and
Ge, 0.67 eV. The gap can be determined by optical absorption, and this is shown
in Figure 9.12.

The polyacetylene bandgap is much larger than the Peierls gap in KCP or in
charge-transfer salts (see Chapter 2). The Peierls transition occurs at a temper-
ature Tp that is in the same order of magnitude as the gap energy Eg (just as
with superconductivity Eg ∼ 4kBTp), because above that temperature many elec-
trons are thermally excited across the gap and the solid does not “notice” the gap
anymore. Since 1 eV corresponds to a temperature of about 10 000 K, at room
temperature polyacetylene is far below the Peierls transition. We cannot heat
polyacetylene into the metallic phase, because the polymer decomposes at some
hundred degrees Celsius.

9.3 Conjugational Defects

In polyacetylene the strict bond alternation is trivial to most chemists, since
dimers (pairs) were polymerized. This molecular picture, though it may use a
slightly different language, translates well into the picture that physicists use.
For a physicist, dimerization behaves like a phase transition from a metallic
to a semiconducting state, though strictly speaking phase transitions are not
allowed in one-dimensional systems according to Landau and Lifshitz [17].
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Domain A Domain B

Misfit

(b)

(c)

(a)

Figure 9.13 Misfits or “domain boundaries” in a conjugated chain: (a) two adjacent single
bonds plus a dangling bond, (b) two adjacent double bonds, leading formally to a pentavalent
carbon atom, and (c) three dangling bonds on a misfit.

But dimerization is a somewhat special case, and this hypothetical phase
transition (Tp ∼ 10 000 K) can be imagined to nucleate at multiple points along
the chain. Domains of the different phases would grow around these nucleation
centers in the typical way of phase transitions. “Misfits” will be created at the
boundaries where domains touch, as shown in Figure 9.13.

These misfits, or domain boundaries, are very interesting from the point of view
that they break the translational symmetry of the system. As seen in Figure 9.13
there is more than one way the boundary between two phase domains might be
imagined. In Figure 9.13a the bond is interrupted by two adjacent single bonds.
To keep the carbon atom tetravalent in the domain boundary or the domain wall
(at the defect), a dangling bond must exist (two bonds join neighboring carbons,
one the hydrogen atom; the fourth bond has no partner). Dangling bonds are not
unusual in semiconductor physics, for example, in amorphous silicon they are
quite common. In polymer chemistry they are also known. The defect shown in
Figure 9.13a is a radical on a polyene chain, and there is an energy cost to change
the phase state on either side to “repair” this radical. The radical can be detected
by electron spin resonance (ESR) because of its unpaired spin.

Are domain walls with two double bonds touching possible, as in Figure 9.13b?
Technically this would lead to a carbon atom with five bonds, and therefore the
defect would preferably be shown as in Figure 9.13c. But is there really a difference
between Figure 9.13a,c? In Figure 9.13c it just remains unresolved as to which
of the three electrons form a pair and which one is left alone. We will see later
that misfits can be neutral or positively or negatively charged, depending on the
electron occupation. Therefore the reader should not protest if he/she sees two
electron pairs in Figure 9.13b and three dangling bonds in Figure 9.13c.

In reality, these misfits are not as well localized as shown in Figure 9.13. The
defect extends over some 10 bonds, modifying the bond alternation gradually.

p =
left bond − right bond

average bond
(9.8)
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Figure 9.14 Bond alternation parameter changing sign at a misfit on a conjugated chain.
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Figure 9.15 Conjugated double bonds as charge density wave in a π electron system.

We define a bond length alternation parameter as the parameter p. It will
change sign at the defect (Figure 9.14).

We might naturally ask about where within the band structure the energy state
of such a domain wall or misfit might fall. Clearly such nonbonding “localized”
states will occur within the bandgap of the material.

From our discussion above regarding the nodes of the wavefunctions between
bonding and antibonding π electrons, we can more properly see the Peierls tran-
sition as associated with a CDW along the chain. Figure 9.15 illustrates the CDW
for polyacetylene. If we interpret the bonding dashes as electron pairs then the
CDW is trivial. It is a periodic modulation of the π electrons that are located at
the double bonds. Due to the bond alternation there is a periodic modulation of
the π electron density. At the domain wall, or misfit, the CDW has a 180∘ phase
slip. Here it should again be stressed that the Peierls transition in polyacetylene
is oversimplified in our discussion. In addition to the electron–lattice coupling,
there are further equally important interactions, often referred to as correlation
effects. To take these into account, the parameter p can be generalized as bond
order parameter and the CDW as bond order wave [2].
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Figure 9.16 The soliton thesaurus in conjugated polymers.

Conjugated double bonds have been studied for more than half a century,
not because of their importance in conducting polymers but because they
are essential for dyestuffs and interesting for fundamental considerations in
quantum chemistry. The pioneering work of Kuhn [18] and Longuet-Higgins and
Salem [19] should be reviewed. As seen in Figure 9.16, many names have been
used to describe these defect or misfit states. Today soliton is used frequently.
We will see why in Section 9.4.

Can conjugational defects be observed experimentally? The ESR signal of
unpaired electrons has already been mentioned. In trans-polyacetylene this
signal is rather strong, corresponding to about 1 spin per 3000 carbon atoms.
The g-factor is 2.0026 and this is associated with the π-conjugated system.
Dynamic nuclear polarization (DNP) experiments further suggest that these
spins are very mobile. For cis-polyacetylene the ESR signal is exceptionally weak,
and DNP shows the electronic spins to be immobile [20].

Of course, we have already mentioned that there can exist charged and
uncharged defects (just as there are charged and neutral lattice defects in
an inorganic semiconductor). In polyacetylene there is a peculiarity that the
charged defects have no spin. Consequently charged defects are invisible in ESR
experiments – but charged and neutral defects can be seen in optical absorption
experiments as states in the gap (midgap states). Following our discussion above,
if the gap is explained as the separation of bonding and antibonding states, a
dangling bond, which is neither bonding nor antibonding but nonbonding, must
be in the gap. A similar line or reasoning might be that if the gap is a Peierls gap
originating from bond length alternation, the alternation parameter will be zero
at the misfit; there is a chain section without Peierls distortion, and there must
be some part of the chain without a gap. These states will fall within the overall
gap of the polymer. This suggests a transition exists between the localized gap
state and the LUMO of the polymer that might be observed through optical
methods. Typically such effects in a pristine polymer would be small (there
may not be many states), but they can be induced through doping as we shall
see. The doping-induced emergence of the midgap absorption is shown in
Figure 9.17.
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Figure 9.17 Optical absorption of
polyacetylene showing the
emergence of a midgap state upon
doping. Note that the absorption
curves cross at an isosbestic point,
because the midgap peak grows at
the expense of the band states.
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9.4 The Soliton

In 1962 Pople and Walmsley [21] investigated the conjugational misfit and sug-
gested that these defects could be mobile and carry charge – giving rise to con-
ductivity. In Figure 9.16 several synonyms for this defect are arranged, each one
in a different context and stressing different aspects. The term “soliton” is listed
as one of the names for the conjugational defect in trans-polyacetylene. This is
largely due to the seminal works of Su, Schrieffer, and Heeger as well as M.J. Rice
[22]. Referred to as the soliton model today, this work equated the domain wall
with a soliton as a refinement of the Pople–Walmsley model for defects using
nonlinear phenomena.

A soliton is a self-reinforcing solitary wave that moves without dispersion
(maintains its shape) at a constant speed. First indications of similarity between
polyacetylene defects and solitary waves can be obtained from Figure 9.14,
showing the bond alternation parameter resembling a tidal wave. This wave
concept in physics has been originally developed from water waves. Water waves
are generally very complicated; only at small amplitudes are they harmonic
waves, looking like a sine or a cosine function.

A harmonic wave is the solution of the wave equation:

c2
𝜙xx − 𝜙tt = 0 (9.9)

This is a linear differential equation of second order. It states that the second
derivative with respect to time 𝜙tt must be proportional to the second spatial
derivative 𝜙xx of the amplitude function 𝜙(x,t). This is fulfilled with the trigono-
metric functions sine and cosine:

𝜙(x, t) = sin(𝜆x − 𝜔t) (9.10)

In water, the wave equation (5.1) is only a small amplitude approximation. For
large amplitudes, nonlinear differential equations must be used, for example, the
Korteweg–de Vries equation:

𝜙t + 6𝜙𝜙xxx = 0 (9.11)
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This equation is nonlinear, because it contains the product of 𝜙 and its deriva-
tive 𝜙xxx. Other nonlinear differential equations are the Sine–Gordon equation

c2
𝜙xx − 𝜙tt = 𝜔2 sin𝜙 (9.12)

and the equation of 𝜙4 potentials:

c2
𝜙xx − 𝜙tt = 𝜔2(𝜙3 − 𝜙) (9.13)

The wave equation (9.9) applies to motions in a parabolic potential. A chain of
balls coupled by springs, as used in our phonon model, would be a good mechan-
ical example. If the potential is non-parabolic, other equations have to be used,
e.g. the Sine–Gordon equation (9.12) for a sinusoidal potential or Eq. (9.13) for
double-well potentials. The alternation of short and long bonds in polyacetylene
can be imaged by double-well potentials, as indicated in Figure 9.18. This figure
also shows a defect at the center of the chain.

The wave equation (9.9) has harmonic waves, i.e. a sine or cosine function as
solution. The nonlinear equations (9.11)–(9.13) also have analytical solutions,
however, in this case, not periodic waves but pulse- or steplike functions. For
example, the solution for the double-well equation (9.13) is

𝜙(x, t) = 𝜙(x − vt) (9.14)

with

𝜙(x) = tan h x∕𝜉 (9.15)

and

𝜉
2 = (c2 − v2)∕𝜔2 (9.16)

Again a trigonometric function is found as solution, not the periodic sine or
cosine but the steplike tan h function.

Since we are used to harmonic waves, we would like to construct steps and
pulses as wave packages. Any shape can be Fourier synthesized by appropriate
superposition of harmonic components. However, wave packages will disperse,
if the velocity of a wave depends on the frequency. For this reason Eq. (9.16) is
called the dispersion relation. The particular steps and pulses we are discussing
here, however, do not disperse. Therefore they are called solitary waves.

In hydrodynamics solitary waves have been studied for more than one and
a half centuries. They were observed even earlier, and they have been feared
because of their nondispersive properties! In fact, Hokusai’s woodcutting is
related to tsunamis – disastrous tidal, solitary waves generated by earthquakes
under the Pacific Ocean. In Europe solitary spring tides are known to propagate

Figure 9.18 Coupled double-well potentials to illustrate conjugational defects in
polyacetylene.
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far inland into river estuaries at the Atlantic; for example, before the river Seine
was dredged, they even went up to Paris!

When we encounter an entity that looks like a pulse or a step, it is not easy to
decide whether it is a wave package or a solitary wave. Experimentally, it would
have to be examined in motion to see whether or not it will disperse. But it might
well turn out that the ocean is too small, so that the entity does not move far
enough for us to see any difference between dispersion and nondispersion. Anal-
ogously, polymer chains might be too short, and in addition it would be difficult to
observe the motion (although, in principle, with magnetic resonance techniques,
it could be realized). If the properties of the medium are known the amplitude of
the entity could be measured. It could be discussed whether an excitation with
such a large amplitude is still compatible with the validity of the harmonic approx-
imation. However, usually our knowledge of the medium is not sufficient.

9.4.1 Doping

In 1977 it was discovered that polyacetylene can be doped and that doped poly-
acetylene has a very high electrical conductivity [23]. Soon after this observation,
M.J. Rice [19, 22]; Su, Schrieffer, and Heeger (“SSH”) [19, 24]; and S.A. Brazovskii
[24] noticed that nonlinear differential equations with solitary wave solutions can
be formulated for polyacetylene and that there is a relation between conjugational
defects and solitary waves. This observation triggered a long and vivid discus-
sion on whether or not solitons exist in polyacetylene (“La chasse aux solitons”
Figure 9.19) [25]. It was also speculated whether these solitons might be responsi-
ble for the high electrical conductivity. It is accepted today that such high doping
levels in polyacetylene are related to soliton formation.

Today, if we search for the term “soliton” in literature, many papers on solitons
in telecommunications will turn up. If we codify a message in pulses and
send these pulses along a cable, it is desirable that the pulses do not disperse

Figure 9.19 La chasse aux solitons, reminiscence of the butterfly hunt in a popular song by
George Brassens; however, what is hunted there does not seem to be butterflies.
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Figure 9.20 (a) A map of the transatlantic cables made by Siemens in 1901 and laid across the
ocean floor. (b) The advantage of non-dispersing solitons in telecommunications is that
signals can be packed together very tightly without loss of time resolution or signal-to-noise
ratio. Today telecommunications solitons are mainly optical. https://www.cbsnews.com/
pictures/the-underwater-engineering-feat-of-the-19th-century-the-transatlantic-cable/.

(Figure 9.20). In conventional cables, pulse shaping devices are inserted every
couple of kilometers, for example, nonlinear amplifiers that amplify the high
pulse center more than the low tails. In glass fibers, dispersion (frequency
dependence of the velocity) is compensated by nonlinear optical effects (inten-
sity dependence of the refractive index). It is not surprising that glass fibers are
described in a “continuous” way, by differential equations and material param-
eters (dielectric constant) entering these equations. For cables with amplifiers
we would tend to describe in a discontinuous way. However with the cable long
enough, it would be possible to average over the amplifiers and to incorporate
the mean value into the material parameters.

There is a solid-state analogue to the continuous cable-plus-amplifier descrip-
tion: the jellium model. In jellium the positive ions of a solid are not localized at
the lattice sites but homogeneously spread over the volume. Maki and coworkers
[26] have studied solitons in polyacetylene in the continuum model. Moreover,
an excellent summary of solitons in polymers is given by Bredas and Street [27].

9.4.2 Quasiparticles

Solitons are quasiparticles corresponding to solitary waves, similar to phonons
corresponding to sound waves and photons to electromagnetic waves (light
waves). There are many properties of solitons that remind us of elementary

https://www.cbsnews.com/pictures/the-underwater-engineering-feat-of-the-19th-century-the-transatlantic-cable/
https://www.cbsnews.com/pictures/the-underwater-engineering-feat-of-the-19th-century-the-transatlantic-cable/
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Figure 9.21 Particles and
antiparticles in step
functions.

Up-step (particle) Down-step (antiparticle)

Pulse (two bound particles)

Soliton Anti-soliton

Figure 9.22 Soliton and anti-soliton in polyacetylene.

particles, for example, the existence of solitons and anti-solitons. Speaking
in terms of step functions, particles and antiparticles are easily identified as
up-steps and down-steps, as illustrated in Figure 9.21. In CDWs they correspond
to phase-slip centers of +180∘ and −180∘. Figure 9.22 shows a soliton and an
anti-soliton for polyacetylene chains. Note that it is acceptable to call the first
noticed conjugational defect a soliton or an anti-soliton, but once we have made
our choice all further particles on the same chain are defined either as solitons
or as anti-solitons.

There will always be some solitons on a polyacetylene chain as a consequence
of synthesis (as we noted, typical ESR results are 400 radicals per 106 carbon
atoms). Additional solitons can only be created in pairs, as soliton/anti-soliton
pairs (“conservation of particle number”). From a chemical point of view, pair
creation is evident, since it involves the breaking of a bond, which leaves two
dangling bonds (or the splitting of an electron pair that leaves two radicals).
Particle–antiparticle annihilation corresponds to closing the bond again.
Figure 9.23 shows solitons migration. A soliton moves by pairing to an adjacent
electron and leaving its previous partner unbound. Note that in this way the
soliton always occupies odd-numbered sites; the even-numbered sites are
reserved for anti-solitons.

When talking about solitons and anti-solitons, we can introduce the concept
of “pseudo-spin”: for electrons we have the spin quantum number and we can
say there are two kinds of electrons – those with spin up and those with spin
down. Similarly we can say there are two kinds of solitons: those moving on
sites with odd numbers in Figure 9.23 and those moving on sites with even num-
bers. The first kind we label “pseudo-spin up” and the latter “pseudo-spin down.”
Since there are spin conservation rules, there are also pseudo-spin conservation
rules. To conserve pseudo-spin we have to create solitons in pseudo-spin up and
pseudo-spin down pairs.

The concept of pseudo-spin is also important for electrons and holes mov-
ing in graphene. In Figure 3.3, we have shown that the honeycomb lattice of
graphene consists of two trigonal lattices, one with A atoms and the other with B
atoms. Like solitons in polyacetylene, electrons and holes in graphene also move
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Figure 9.23 Solitons and anti-solitons. The presence of a soliton on a polyene chain allows the
classification of the lattice sites as even and odd and of all further conjugational defects as
solitons and anti-solitons.

in double steps (graphene also has conjugated double bonds!); one kind of elec-
tron manifests itself on the A sites of the graphene lattice, while the other on the
B sites.

Figure 9.24 shows the results of a quantum chemical calculation on a poly-
acetylene chain with 61 carbon atoms [28]. Since polyacetylene synthesis starts
with acetylene with the carbon atoms already paired, it is unlikely that polymer
chains with an odd number of carbon atoms occur; however calculations are cer-
tainly possible with these chains. Evidently, an odd-numbered chain must have
an unpaired electron, i.e. there must be a soliton in the ground state. Figure 9.24
shows the spatial distribution of the electron density at the midgap state as well
as the density in the valence (π) and the conduction (π*) band. Note that the
density at the midgap state is built up at the expense of the π and π* densities.
Furthermore we see that the soliton extends over about 20 lattice sites (this is the
“thickness” of the domain wall); in addition, the midgap density accumulates only
on every second lattice site, in this case on the even sites, leaving the odd sites for
anti-solitons.

Several attempts have been made to get experimental information on spatial
extension of the soliton wavefunction. The most reliable results are obtained from
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Figure 9.24 Charge distribution
of a conjugational defect on a
polyacetylene chain on 61 carbon
atoms [28, 32].
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Figure 9.25 Distribution of the spin
density of a soliton defect on a polyene
chain with l = 11 and u/g = 0.43 used
for simulations of ENDOR spectra
[30, 34].

–30 –20 –10 0 10 20 30 j

–0.1

0

0.1

0.2

ρ

electron nuclear double resonance (ENDOR) and from pulsed triple resonance
experiments. Grupp et al. [29] have fit their data to the following spin distribution
function:

𝜌i = (1∕l) sec h2(j∕l)[gcos2(jπ∕2) − usin2(jπ∕2)] (9.17)

where j is the lattice site index, 2l is the full width at half maximum of the
soliton wavefunction, and g and u represent the population of the even- and
odd-numbered lattice sites, respectively. The fit yields l = 11 and u/g = 0.43. The
corresponding wavefunction is shown in Figure 9.25. If there is electron–lattice
coupling only, u/g indicates that the soliton wavefunction is nonzero also at the
sites reserved for anti-solitons. The observed anti-solitonic admixture can be
taken as experimental evidence of electron correlations.

A soliton is free to move, because the total energy of the system does not
depend on the position of the soliton if the chain is long enough. In short chains,
end effects will push the soliton to the center. A more detailed analysis shows
that the soliton has to overcome an energy barrier when moving from one site
to the next (more exactly, to the next but one, because it moves in double steps).
The existence of this kind of barrier leads to “self-trapping” of the soliton on
the chain. Free soliton motion is possible only in polyacetylene. Only here the
energy of the system does not depend on the position of the soliton; in the other
polymers shown in Figure 2.28, motion of a soliton changes the energy. This
is because polyacetylene has a “degenerate ground state” as we have already
seen. Conjugational defects in “nondegenerate ground-state polymers” will be
discussed below.



324 9 Polarons, Solitons, Excitons, and Conducting Polymers

One can estimate the effective mass of a soliton. This is not the free electron
mass, because it is not the electron that is moving. The defect is moving, and this
means that the electrons change their partners, not their position. Of course, this
requires a slight displacement of the ions to invert short and long bond lengths.
These ionic displacements determine the effective mass of the soliton. Within
this model Su et al. [22a] estimated the effective mass of a polyacetylene soliton
to amount to about six free electron masses.

There are neutral as well as positively and negatively charged solitons. So far we
have encountered only neutral solitons. See, for example, Figure 9.23 where the
dangling bond consists of an electron sitting on a lattice site that is also occupied
by a positively charged ion (carbon nucleus plus closed electron shell). Electronic
and ionic charge compensate at the defect as they do in the undisturbed part
of the chain – leaving it neutral. However in redox reactions the defect is more
sensitive than the rest of the chain. The first electron to be removed during oxida-
tion is that of the dangling bond, and the first additional electron in a reduction
reaction will also go to the dangling bond. Figure 9.26 shows the π and π* band
(hatched areas), and the soliton midgap state. This state can be occupied by up to
two electrons (as with any orbital because of spin-up and spin-down degeneracy).
No matter how many electrons occupy the midgap state, there is always a lat-
tice distortion at the defect interrupting the band alternation. The ionic charge is
compensated only when there is one electron at the defect. If there is no electron
the ion is left uncompensated and the soliton is positively charged; two electrons
overcompensate the ion and the soliton becomes negative.

+

Q = e

S = 0

Q = 0

S = 1/2

Q = –e

S = 0

Figure 9.26 Spin–charge inversion of a conjugational defect. Charged solitons are spinless;
neutral solitons carry a magnetic moment.
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Chemists refer to the neutral soliton as a radical, the positive soliton a carboca-
tion and the negative soliton a carbanion (note, however, that in our case radical,
carbocation, and carbanion are not isolated but incorporated into a conjugated
chain, which leads to a modification of the adjacent chain segments, often called
relaxation).

In Figure 9.26 the spin of the solitons is also marked. The neutral soliton is an
unpaired electron with spin either +1/2 or −1/2. On the positive defect there is
no electron and hence no spin, and the negative defect has two electrons with
opposite spins, so that the net spin is zero again. Notice the famous spin–charge
inversion: whenever the soliton bears charge it has no spin and vice versa! This is
trivial considering the chemistry, but it is very surprising when thinking of soli-
tons as particles.

It has repeatedly been emphasized that the approximations in this chapter are
an oversimplification; the most exciting result, the soliton, is an oversimplifica-
tion as well. But simple models bear their justification. Solitons play a similar key
role in nonlinear dynamics as the harmonic oscillator does in linear dynamics.

9.5 Generation of Solitons

It has already been discussed that solitons can only be generated in pairs, as
solitons and anti-solitons, provided they are not already present from synthesis.
During polyacetylene synthesis only very few solitons are created. There should
be a soliton on every chain with an odd number of carbon atoms, but there are
far fewer odd-numbered chains than even numbered because the synthesis starts
from carbon pairs (acetylene).

There are three methods to generate additional solitons: (i) chemical doping,
(ii) photogeneration, and (iii) charge injection. Doping of conjugated polymers
is a chemical redox reaction. As mentioned before, some people dislike the term
“doping” in this connection because of apparent difference to doping of silicon or
germanium. One difference is the doping level. Polymers are doped up to several
percent, whereas typical doping concentrations of classical semiconductors are
in the ppm range. Saturation doping of a polymer certainly leads to a new mate-
rial with another chemical formula (for example, [(CH)7I3]n for iodine-doped
polyacetylene instead of (CH)n for undoped polyacetylene) as well as to a new
crystallographic structure. In the case of doped silicon, we do not describe it as
a new material. But in our opinion there are more similarities than differences.
Apart from the high doping level, iodine doping of polyacetylene is very similar
to lithium doping of silicon: the dopant goes to interstitial sites of the crystalline
lattice of the host; charge is transferred from the dopant to the host, thus moving
the Fermi level of the host. The main discussion is concerned with the question
of whether doping is a continuous or a stoichiometric reaction and whether there
is phase segregation between doped and undoped regions or whether the doped
material “dissolves” in the host. However, we note that the field has come to use
the term “doping” rather widely at this point.

In Figure 9.27 the process of polyacetylene doping is shown schematically. In
the first step a double bond is broken followed by the transfer of an electron
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Figure 9.27 Creation of solitons by chemical
doping (oxidation) of a polyene chain.

from the polymer chain to the dopant. Thus two solitons are created, one neutral
and the other positively charged (“p-doping”). The next dopant will then react
with the neutral soliton, because in most p-doping reactions, stoichiometry
requires the transfer of two electrons, for example:

[PA]∘ + 3I2 → [PA]++ + 2I−3 (9.18)

In n-doping only one electron will be transferred:

[PA]∘ + K∘ → [PA] + k+ (9.19)

But nevertheless only very few neutral solitons will survive, because they
will diffuse along the chain and annihilate with anti-solitons from other doping
events.

Chemical doping changes the conductivity of conjugated polymers by many
orders of magnitude. In fact, there is a doping-induced insulator-to-metal tran-
sition. This transition is easy to understand: doping generates solitons. Solitons
have midgap states that interact and finally the gap will disappear. If a soliton is a
local suppression of the Peierls distortion, doping will just reverse the Peierls dis-
tortion. From the spatial extension of the soliton wavefunction over about seven
lattice sites (see Figure 9.25), the stoichiometry of 7 : 1 for the ratio of CH to I3 in
saturation doped polyacetylene seems quite plausible.

Photogeneration of solitons is illustrated in Figure 9.28. The figure is drawn in
a way to stress the similarity of electron and hole generation in semiconductors.
In a first step an electron is lifted from the valence (π) band to the conduction
(π*) band. Thus an electron–hole pair is created. Now the lattice relaxes around
the electron and the hole, i.e. the bond lengths readjust, and a negative soliton S−

and a positive anti-soliton S
+

are formed. The solitons S− and S
+

can move in an
electric field and thus give rise to photoconductivity, or they can recombine. If
they recombine radiatively, photoluminescence will be generated. Alternatively
to Figure 9.28 it could have been assumed that in the first step the double bond
is cleaved by absorption of light, leading to two dangling bonds. However in this
case it has to be demonstrated that not only the bond is split but charges are also
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Figure 9.28 Photogeneration
of solitons.
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Figure 9.29 Soliton generation by charge
injection. In a first step electrons and holes are
injected from the electrodes. These then relax to
form solitons and anti-solitons.

hv

CB(π*)

EF

Electron
injection

Hole
injection

EF

VB(π)

•

°

separated, so that the final products are not two neutral solitons S∘ and S∘, but
two charged solitons S− and S

+
[30].

Charge injection is also known from semiconductor physics. A semiconductor
is sandwiched between two metal electrodes, as shown in Figure 9.29. By choos-
ing metals with appropriate work functions and additionally applying an external
voltage, the Fermi levels of the metals are adjusted in such a way that one elec-
trode injects electrons into the π* band and the other extracts electrons from the
π band (which is the same as injecting holes into this band). The lattice relaxes
around the injected carriers and solitons are formed. Finally the solitons recom-
bine, some of them by emission of light. Provided that the quantum efficiency for
radiative recombination is high enough, an organic light-emitting diode (OLED)
is obtained. We should note one very important difference in the band diagram
for charge injection with organics as shown: that is, the absence of so-called “band
bending” in the system. Because itinerate, or free, charge doesn’t exist within the
polymer before it is injected, bands at interfaces are generally represented in a
“flat band” condition. However, defects at the interface or doping in the polymer
can drastically alter this situation. Charge injection dynamics and soliton forma-
tion across the metal–polymer interface has been studied extensively within the
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last decade and is still hotly debated. Most importantly though, it has been shown
by Friend et al. in optical absorption experiments that solitons are formed before
the injected carriers recombine [31].

9.6 Nondegenerate Ground-State Polymers: Polarons

It has already been mentioned that there are degenerate and nondegenerate
ground-state polyenes. Polyacetylene represents the first group, and all other
polymers presented in Figure 2.28 belong to the second group. Degenerate
means that the energy does not change when single and double bonds are
interchanged. The situation is illustrated in Figure 9.30. For polyacetylene it does
not matter whether the double bond is on the left-hand or the right-hand slopes.
In polyphenylene, however, interchange of single and double bonds leads from
aromatic state A (three double bonds within the ring) to the quinoidal state B
with only two double bonds within the ring, but the rings linked by double bonds
instead of single bonds. The quinoidal structure has a much higher energy than
the aromatic state.

In Figure 9.31 a soliton in polyacetylene is compared with a hypothetical soliton
in polyphenylene. Because of the degeneracy in polyacetylene, the position of

Polyphenylene

State A State B

Polyacetylene

Figure 9.30 Degenerate and nondegenerate ground-state polymers.

Polyphenylene

Polyacetylene

Figure 9.31 A soliton is free to move in polyacetylene, whereas in polyphenylene it is pushed
to the chain end by lattice forces.
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Figure 9.32 The nondegenerate ground state of cis-polyacetylene.

the soliton does not matter energetically. In polyphenylene the soliton separates
a low energy region from a high energy region. The soliton will, of course, be
driven to the chain end, changing the high energy quinoidal rings into low energy
aromatic rings as it moves. The situation is comparable to magnetic domain walls
in an external magnetic field or to dislocations in a crystal under elastic strain: the
magnetic or the elastic field will drive the defects out of the solid. So individual,
mobile solitons do not form in a nondegenerate ground-state polymer (though
we loosely refer to domain boundaries in these systems as solitons).

Of course we have been discussing trans-polyacetylene. cis-Polyacetylene also
has a nondegenerate ground state as seen in Figure 9.32. Shown in Figure 9.33
are several other polymers we have already met. Notice that these too have non-
degenerate ground states.

To stabilize conjugational defects in a nondegenerate ground-state polymer, we
have to create bound double defects. Such double defects are called “polarons.”
An example is shown in Figure 9.34. There is a neutral and a positive soliton.
These defects are pushed toward each other by the lattice in order to minimize the
length of the quinoidal part of the chain. However these solitons and anti-solitons
cannot recombine because one single electron cannot form a bond. A defect com-
posed of two positive solitons is shown in Figure 9.35. This species usually is called
a “bipolaron,” since in case two polarons meet, the two neutral solitons can form
the bond, and only the two charged solitons are left over.

Figure 9.36 presents the whole particle zoo for polyacetylene. In the particular
case of polyacetylene, there is no evident binding force for polarons (unless it is
assumed that interactions between neighboring chains in a polyacetylene crystal
exist). Both solid state and the chemical terms of the defects are presented in the
figure, for use as a “physical–chemical dictionary.”

As demonstrated above, the optical signature of a soliton is the midgap state
(because of correlation effects it will not be exactly at the midgap position). A
polaron is characterized by two states in the gap. The emergence of two states can
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Figure 9.33 The broken degeneracy in a few polymer examples.

Figure 9.34 Polaron in polyphenylene.

Figure 9.35 Bipolaron in
polyphenylene.

be rationalized to occur through interaction between the midgap states belonging
to the soliton components of the polaron (Figure 9.37).

The two gap states of the polaron can be occupied by zero, one, or two electrons
each, as indicated in Figure 9.38. Depending on the occupancy, the defect is either
neutral or charged and does or does not carry a magnetic moment. The two possi-
bilities (low spin and high spin) of accommodating two electrons on a polaron are
reminiscent of excitons in molecules and in inorganic semiconductors. Therefore,
they are called polaron excitons or sometimes just excitons. Incidentally, polarons
are also known in semiconductor physics: an electron moves through the lattice
by polarizing its environment, thus becoming a “dressed” electron. It is a lattice
distortion that is small compared to the polaron defect in conjugated polymers.

The fact that solitons cannot move freely in a nondegenerate polymer is often
called soliton confinement. The soliton confinement has an appealing analogy to
quark confinement in elementary particle physics. If we tried to separate the
two parts of a polaron by pulling them apart (Figure 9.39), we would create a
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Figure 9.36 Complex conjugational defects constructed from solitons for polyacetylene: a
“physical–chemical dictionary.”

+

Figure 9.37 Two gap states of a polaron, resulting from splitting the solitonic midgap state by
the interaction between the two components.

large chain section with high energy. If the high energy section is sufficiently long
(a few quinoidal rings will do), enough energy will be generated to split a double
bond and create two new solitons, which then will form new and smaller polarons
with the previous solitons, so that the major part of the chain can again relax
into the low energy form. This will happen far earlier than the possible cutting of
the polymer chain into pieces and isolation of a soliton in one of the fragments.
Similarly, quarks cannot be pulled out of elementary particles.
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Figure 9.38 The polaron “menagerie.”

Figure 9.39 Soliton confinement is a nondegenerate polymer. If the solitons forming a
polaron are pulled apart, a high energy section of the chain will be created between the
solitons. Soon the energy stored will be large enough to break a double bond and create two
new solitons.

9.7 Fractional Charges

Another relation to elementary particles is the concept of fractional charges. Free
particles carry integer charges, usually +e or −e, where e is the electronic charge.
Quarks can have charges like 2/3e. If we put electrons into a solid, they will of
course keep their charge, but they will use it to compensate the ionic charges
so that the solid will become neutral. If Bloch waves and wave packages out of
Bloch waves are constructed, is it trivial that a wave package must have an integer
charge? And what about solutions of nonlinear differential equations? Must they
carry integer charges?

Figure 9.40 shows again polyacetylene in the extended version. In the next step
two negative solitons are added to the chain. These solitons are marked by arrows.
The solitons are 180∘ phase-slip centers and they amount to the insertion of an
additional single bond. To keep the chain length constant, two bonds are removed
at the end, a single and a double bond. Counting the electrons we notice that the
newly formed chain has two electrons less than the former chain. Since the former
chain was neutral, the new chain bears the charge of+2e. If this amount of charge
is equally distributed over the two defects, each defect will carry the charge of
+e. For polyacetylene the charge at a defect is evident and such a complicated
electron counting procedure is not necessary.
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Figure 9.40 Electron counting to demonstrate fractional charges on one-dimensional chains.

The lower part of the figure shows the hypothetical polyfractiolene. This is a
hypothetical polymer with double bonds separated by two single bonds. Poly-
acetylene without a Peierls distortion would have a half-filled band. The band
in polyfractiolene would be filled to 1/3 (less electrons than in polyacetylene)!
Insertion of an extra single bond will again be a phase-slip center, in this case, of
120∘. Counting the electrons of polyfractiolene in the same way as in polyacety-
lene will show that two charges are to be shared by three defects! It is not quite
clear whether it is allowed to look at individual solitons. If all solitons created
simultaneously must be viewed together, one might argue that fractional charges
are just a bookkeeper’s trick. On the other hand, fractional charges on solitons
are a nice analogy to fractionally charged quarks. Further relationships between
charge fractionalization in one-dimensional metals and relativistic field theory
are discussed by Jackino and Schrieffer [32]. The similarity between fractionally
charged solitons and the fractional quantum Hall effect has been pointed out by
Schrieffer [33].

Polyfractiolene cannot be synthesized. The bond sequence shown in
Figure 9.40 can only be stabilized by inserting protons onto the chain, and
the proton arrangement would break the required symmetry. But in the crys-
talline one-dimensional metals mentioned in Chapter 2, band filling of 1∕3 or
1∕4 exists, and in these systems fractional charges might occur. Bak and Jensen
[34] has even proposed an experiment to put their existence into evidence: via
the current flowing through a conductor, the number of charges is measured
and the number of carriers is inferred from analysis of the noise spectrum of the
current. Divide the number of charges by the number of carriers and so on. The
proposal was made in 1982. Today one might go a step further and propose to
use the tip of a scanning tunnel microscope as a local probe.
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Figure 9.41 Polyspinolene, a linear arrangement of magnetic dipoles (a) and (b) forms of the
degenerate ground state. (c) One dipole reverse (like a soliton, two domain walls). (d) Domain
walls (magnetic charges = poles) separated.

Polyacetylene also stimulates a Gedankenexperiment on magnetic monopoles
[35]. Figure 9.40 shows polyfractiolene. In Figure 9.41 we show a further hypo-
thetical substance, polyspinolene.

Polyspinolene is just a linear arrangement of magnetic dipoles. Here, we are less
inspired by real polymers, nor by polycarbene (Figure 2.35). Our intuition comes
from stacks of phthalocyanines (Figure 2.21) where the central metal could bear a
magnetic moment, or from KCP in Figure 2.8, or from MX chains in Figure 2.33.
In any case, we assume that there are some ligands keeping the dipoles in line.
Some people will speak of a crystalline field acting on the dipoles. Traces (a) and
(b) in Figure 9.41 show that the two degenerate ground states of polyspinolene,
while in Trace (c) we have created a soliton–anti-soliton pair (two domain walls).
One can easily convince oneself that the domain walls correspond to magnetic
poles (at head–tail junctions of the arrows, the poles compensate; at head–head
or tail–tail junctions, there are magnetic charges). In Trace (d) the domain walls
are separated (by “soliton motion”), and if we can cut the chain in between, we
have magnetic monopoles!

Polyspinolene of Figure 9.41 exists only in our Gedankenexperiment. But a
more curly and interwoven version does exist in nature. These are the so-called
spin ice compounds. An example is (Dy,Ho)2Ti2O7 [35d]. Magnetic order,
magnetic domains, and magnetic domain walls can be investigated by neutron
scattering. The correlation function of spin ice is different from that of con-
ventional ferromagnetic domains. Neutron scattering experiments have shown
evidence [35e] of spin ice with entangled strings carrying magnetic monopoles
at their ends.

9.8 Soliton Lifetime

Most measurements of conducting polymers are fairly simple: optical spec-
troscopy, electrical conductivity, and magnetic susceptibility. But the theoretical
concepts are so exciting that many scientists engage in very sophisticated
experiments. Critics then might ask, “Why would you waste such a beautiful
experiment on such ill-defined samples?” (And compared to perfect silicon single
crystals, conjugated polymers certainly are ill-defined.) An example of this type
of experiment is picosecond photoconductivity in polyacetylene. However, since
samples have improved as has our understanding of statistical methods to treat
order, these experiments have become far more common in characterizing new
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materials (one of the authors, SR, was involved in developing these techniques
in polymers).

The idea of the experiment is simple: take stretch-aligned polyacetylene, i.e.
polyacetylene in which the chains have been more or less aligned by stretching
(certainly a large single crystal would be better, but we don’t have that). Electrodes
are evaporated on the sample and an electric field is applied. Short light pulses
are affected on the sample that photogenerate solitons. Charged solitons will be
displaced by the electric field, a photocurrent will flow, and the decay of the pho-
tocurrent with time can be measured. The photocurrent will flow as long as the
charge carriers move. If the experiment is carried out on a silicon single crystal,
the carriers move until they hit the electrodes at the crystal surface. From the
decay of the photocurrent, the time the carriers need to cross the crystal, their
time of flight, is obtained. From the electrode separation we know the distance
the carriers migrate, and their velocity can be calculated. Division by the elec-
trical field yields the mobility. If the crystal has many imperfections that act as
traps, the carriers will get trapped before they reach the electrodes. If we know
the average distance between the traps, we can again calculate the mobility from
the decay of the photocurrent.

In a very imperfect semiconductor, the carrier lifetime is only a few picosec-
onds. Such a fast decay of the photocurrent can be difficult to measure directly;
standard preamplifiers typically have rise times of about 100 ps. Therefore,
picosecond photoconductivity experiments often employ optical correlation
methods. The sample is regarded as a fast optical switch; two such switches are
put in series. They are illuminated by light pulses, one delayed with respect to the
other (Figure 9.42). If both pulses arrive simultaneously, both switches are on,
and an oscilloscope records a signal (of course, distorted by the slow response of
the scope, but that does not matter). If the delay is so large that the first switch
is off already and the second is not yet on, there will be no signal, but if the
opening time of the switches overlaps, there is some signal. By changing the
delay between the pulses, fast events can be probed (pump and probe technique).
The two pulses are usually generated by sending the laser beam through a beam
splitter followed by change of the optical path length in one of the branches.

HV
Switch 1 Switch 2

Oscilloscope

Pulse 1 Pulse 2

Figure 9.42 Optical correlation experiment for fast photoconductivity decay.
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Figure 9.43 Two fast optical switches built into 50Ω striplines for a picosecond correlation
measurement to study the fast decay of the photocurrent in polyacetylene (soliton lifetime).

Picoseconds circuitry is somewhat more sophisticated than it would seem in
Figure 9.42, mainly because a 50Ωwave resistance has to be kept throughout the
circuit to avoid pulse distortions. Therefore the switches have been constructed
as part of 50Ω stripline. The stripline is shown in Figure 9.43. One of the gaps in
the copper strips is covered by ion-bombarded silicon, and the other by a poly-
acetylene flake. The width of the gaps is about 20 μm.

The experimental result is shown in Figure 9.44 [36]. The signal intensity is
plotted over the pulse delay. The signal rises within 2.5 ps and decays within 6 ps.
The analysis shows that the rise time is mainly determined by the silicon switch,
the decay by the polyacetylene sample. From this experiment we know that the
photoconductive decay time is about 6 ps. From other optical experiments
we estimate the schubweg, i.e. the distance the solitons migrate before they
are trapped; we obtain a mobility of about 1 cm2/V s for charge carriers in
polyacetylene. This is in remarkable agreement with theoretical calculations for
solitons (and polarons) in polyacetylene [37].

Just for the sake of interest, we note that the short lifetime of solitons in
polyacetylene was at one time proposed to be used as the basis to build a
fast holographic computer. Photogeneration of solitons makes polyacetylene
a nonlinear optical material: the refractive index depends on the number of
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Figure 9.44 Optical correlation measurement of picosecond photoconductive decay in
polyacetylene.

solitons. Consequently holograms can be stored in polyacetylene. These holo-
grams fade within a few picoseconds, but this time is long enough to compare
two holograms (holographic pattern recognition). After a few picoseconds the
polyacetylene is ready to analyze the next hologram. This way a computer with
the world record in data throughput per time can be constructed [38].

9.9 Conductivity and Solitons

We have discussed conjugational defects. We have seen that these defects are
quasiparticles, that they can be neutral or positively or negatively charged, and
that they can move along a polymer chain with an effective mass only slightly
larger than the free electron mass, m*∼ 6me. Therefore it is tempting to associate
the conductivity of polyacetylene with the motion of charged solitons.

To estimate how important charge transport by solitons might be, we look at
the Drude model. What is the collision time for solitons? Jeyadev and Conwell
[39] analyzed the scattering of solitons on one-dimensional longitudinal acous-
tic phonons that are compressional waves along the chain. The soliton energy of
the compressed section differs from that in the decompressed section. As with
electron–phonon scattering in a semiconductor, soliton–phonon scattering can
be calculated by means of the deformation potential method [40]. Jeyadev and
Conwell obtained values in the order of 1 cm2/V s for the mobility of solitons
in polyacetylene at room temperature and about 100 cm2/V s at 50 K. These cal-
culations neglect impurity scattering, which will reduce the mobility particu-
larly at low temperatures. Below 20 K the solitons will be self-trapped due to the
discreteness of the lattice, so that in the low-temperature limit, a simple poly-
acetylene chain will be an insulator, both from the electron localization point of



338 9 Polarons, Solitons, Excitons, and Conducting Polymers

Midgap states Soliton band
Partially filled
wide band

π*

π

Figure 9.45 Development of a soliton band from midgap states and final suppression of the
π–π* gap upon the increase of soliton concentration.

view and from soliton transport considerations. Picosecond photoconductivity
experiments allow for experimentally checking the calculated mobility [41]. The
agreement is surprisingly good.

If the solitons are not photogenerated but created by doping, the electrostatic
interaction between the charge of the solitons and that of the counterions has to
be taken into account. For example, by iodine doping two positive solitons and
two negative I−3 ions are created. The solitons will be trapped by the Coulomb
field of the I−3 ions; the electrostatic energy will be much larger than the ther-
mal energy kBT or the energy generated by the applied electric field. Hence, in
doped polyacetylene, charged solitons will not be mobile and will not contribute
to conductivity.

In heavily doped polyacetylene, the midgap states associated with the solitons
will interact and form a soliton band. The soliton band will be partially filled and
band conductivity might occur. If the soliton band is wide enough to overlap with
the π and π* bands, little of the exciting soliton particles is left. In Figure 9.45 the
development of a soliton band from midgap states is schematically shown as well
as the final vanishing of the π–π* gap upon increasing the soliton density. Band
conductivity in polyacetylene will be further discussed below.

Another conductivity mechanism related to solitons is intersoliton hopping
[42]. In this model, charged and neutral solitons are present in (slightly) doped
polyacetylene. The charged solitons are trapped by the dopant ions, but the
neutral solitons are free to move. Whenever a neutral soliton passes close by a
charged soliton, an electron can hop between the midgap states belonging to the
solitons (Figure 9.46).

As seen previously, there is spin–charge inversion for solitons in polyacetylene:
charged solitons carry no spin, while spin-carrying solitons have no charge. There
was much discussion on whether or not experimental evidence of spin–charge
inversion could be obtained, for example, by relating data of electrical conduc-
tivity to those of magnetic susceptibility. In Figure 9.47 the paramagnetic Curie
susceptibility and the electrical conductivity of polyacetylene are plotted vs. the
doping concentration [43]. The susceptibility decreases, while the conductivity
increases. The experimental data are consistent with the assumption that – at low
doping concentrations – doping first converts neutral spin-carrying solitons into
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I–3

I–3

Figure 9.46 Intersoliton hopping: charged solitons are trapped by the dopant counterions,
but neutral solitons are free to move. When a neutral soliton is close to a charged soliton, the
electron hops from one defect to the other.

Figure 9.47 Decrease of
Curie paramagnetic
susceptibility 𝜒 (from ESR)
and increase of conductivity
𝜎 upon doping of
polyacetylene as a
consequence of spin–charge
inversion for solitons [43].
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charged spinless solitons. There are some 200 ppm of neutral solitons in undoped
polyacetylene, and the first electrons to be oxidized upon doping are those cling-
ing to the solitons.

Simultaneous to charging of existing solitons, doping creates new solitons, as
shown. At high soliton concentrations the solitons interact, and a soliton band
is formed, which widens until the π–π* gap is finally suppressed (Figure 9.45).
Noninteracting spin-carrying solitons fully contribute to the Curie susceptibility,
which, decreasing with 1/T (Curie law), is the susceptibility of isolated parti-
cles fighting individually against thermal disorder. Interacting particles tend to
compensate their spins, until for particles in a band, Pauli susceptibility finally
replaces Curie susceptibility. To obtain the Pauli susceptibility, the sample tem-
perature T has to be replaced by the Fermi temperature TF = EF/k. As a result,
the Pauli susceptibility is temperature independent. Because of TF ≫T the Pauli
susceptibility is much smaller than the Curie susceptibility. Consequently, the
decrease in susceptibility as shown in Figure 9.47 could also be due to the gradual
transition from Curie susceptibility to Pauli susceptibility.
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Figure 9.48 Susceptibility vs. doping concentration in electrochemical doping polypyrrole.
The susceptibility is measured in spins per six pyrrole rings, and the doping concentration in
electronic charges transferred per six pyrrole rings [44].
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Figure 9.49 Pauli
susceptibility 𝜒P and electrical
conductivity 𝜎 plotted vs. the
doping concentration in
polyacetylene. Source:
After [45].

In nondegenerate ground-state conjugated polymers like polyparaphenylene
and polypyrrole, solitons are unstable, and there are well-defined compound
particles like polarons. Polarons carry a spin, and bipolarons are spin compen-
sated. Upon doping, at first susceptibility increases, then, from a certain doping
level onwards, susceptibility decreases due to the formation of bipolarons. An
example for electrochemical doping of polypyrrole is shown in Figure 9.48 [44].
It is obvious that the susceptibility reaches a maximum when one electronic
charge has been transferred to about every sixth pyrrole ring, but this maximum
corresponds to only half as many spins as there are charges.

Experimentally, the Pauli susceptibility can be separated from the Curie sus-
ceptibility by temperature dependence. In Figure 9.49 the Pauli susceptibility of
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polyacetylene is plotted vs. the doping concentration [45], and the conductivity
is taken from Figure 9.47. There is a pronounced step in the Pauli susceptibility at
a doping concentration of 6%. This step is not consistent with a gradual conver-
sion of isolated solitons into a soliton band. It rather suggests a phase transition.
A similar step has been observed in sodium-doped polyacetylene [46]. Kivelson
and Heeger [47] introduced a theory for a first-order phase transition driven by
soliton interactions. An alternative driving force for this phase transition might
be a rearrangement in chain packing due to the accommodation of dopant ions
[48]. (It is also possible that both soliton interaction and intercalation of coun-
terions lead to separate phase transitions, and these two-phase transitions then
interlock.) Despite the origin of the phase transition, it is remarkable that between
2% and 6% doping, high conductivity is observed but no detectable magnetic sus-
ceptibility, neither Curie nor Pauli.

9.10 Fibril Conduction2

Polyacetylene has been our “model” system for these discussions. Except for
materials with very high conductivity (𝜎 > 1000 S/cm) similar data are obtained
for all of the conducting polymers. But a peculiar problem arises for the inter-
pretation of data that is complicated by the fibril morphology of conjugated
polymers.

Figure 9.50 shows an electron micrograph of a polyacetylene film. Note the
spaghetti structure. An idealization of this structure is presented in Figure 9.51,
stressing the interfibrillar contacts. Small crystalline domains are discernible

Figure 9.50 Scanning electron micrograph of polyacetylene film showing the “spaghetti” or
fleece-like morphology. The scale marked on the rim corresponds to 1 μm.

2 This section goes beyond the results for correlation in transport that is the overall focus of this
chapter. It is included to give a view as to the difficulties in interpreting such transport
measurements specifically.
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Figure 9.51 Schematic view of the fibrillar
structure of polyacetylene. The fibers are
bundles of chains, containing some 100 or
1000 polymer chains. They intersect in
fractions of 1 μm.

within the fibers in which the chains are well ordered. These areas can be
analyzed by X-ray or neutron diffraction to give the structure of the elementary
cell. Amorphous regions are situated between crystalline domains. A crystalline
domain, however, is not perfectly ordered; there are point defects such as chain
ends, cross-links, etc. The overall electrical conductivity will be a superposition
of intrachain, interchain, and interfiber charge transport mechanisms. If the
polyacetylene film is stretched the fibers are aligned and the crystallinity within
the fibers is improved.

As far as the conductivity is concerned, at present we distinguish between
two types of polyacetylene samples: (i) standard or Shirakawa polyacetylene
(“Type S”) – when saturation doped with iodine, these samples achieve con-
ductivity values of some hundred S/cm – and (ii) new, or Naarmann, or highly
oriented polyacetylene [49] (“Type N”) in which the conductivity of doped
samples exceeds 103 S/cm and may even reach 106 S/cm. The highly doped poly-
acetylene, which stays metallic at low temperature belongs to Type N, whereas the
Type S, becomes insulating as T → 0. The conductivity in Type S is dominated by
hopping, and the conductivity of Type N is not. It is generally assumed that Type
N samples exist only for polyacetylene, whereas samples of all other conjugated
polymers are of Type S. However, it is possible that material perfection will also
lead to Type N samples in polyaniline, polyphenylene vinylene (PPV), and others.

Figure 9.52 presents a conductivity chart that compares the room temperature
conductivity of doped conjugated polymers with that of other materials. Note
that the polymer conductivity values extend over the whole region from insulat-
ing such as diamond to highly conducting such as copper. The top part of the
polymer arrow represents Type N polyacetylene.

In Figure 9.53, the conductivity change upon doping is shown for Type S poly-
acetylene. A sharp initial increase is followed by saturation at some 5 or 6 mol%.
These high doping levels contrast with the doping concentrations we used to
form conventional semiconductors like silicon or germanium, which are in the
ppm range. (The high doping level is one of the reasons why many scientists
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Figure 9.52 Comparison of the room
temperature conductivity values of
conducting polymers with conductivities of
other materials.
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Figure 9.53 Conductivity of polyacetylene
as a function of doping concentration (type S
polyacetylene, room temperature, iodine
doping).
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dislike the term doping in connection with conducting polymers.) The initial
rise is even more pronounced, when accidental doping by atmospheric oxygen
or other impurities is compensated by treating the sample in ammonia. In that
case it is possible to observe conductivity changes of more than 10 orders of mag-
nitude.

Figure 9.54 shows the temperature dependency of the conductivity of
iodine-doped (Type S) polyacetylene at various doping levels [50]. At all levels
of iodine concentration, the conductivity decreases upon cooling of the sample,
with the decrease being much smaller for highly doped than for slightly doped
samples. The set of curves is consistent with variable range hopping (VRH) that
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Figure 9.54 Temperature
dependency of polyacetylene
conductivity at various
concentrations of iodine doping
(Type S polyacetylene) [50].

will be discussed in Section 9.11. At very low doping levels, power laws (with
powers larger than 10) fit the data equally well. Figure 9.55 shows Epstein’s
data on undoped (accidentally doped) polyacetylene [51]. The straight line
corresponds to 𝜎 ∼T14.

Highly doped Type N samples do not behave according to VRH. They are metal-
lic in the sense that the conductivity does not vanish as T → 0. In some cases
the conductivity is found to even increase upon cooling. An example for such a
behavior is plotted in Figure 9.56. Note the maximum at 250 K; between room
temperature and 250 K, the slope is negative [52].

The highest conductivity values published so far are close to 106 S/cm. One
of the highest is shown in Figure 9.57 [49d, e]. A Type N polyacetylene sample
is exposed to iodine, and the conductivity climbs up to 500 000 S/cm, which is
almost as high as the room temperature conductivity of copper.

With a few exceptions it turned out that it is very difficult to synthesize sam-
ples with conductivities above 105 S/cm. On the other hand, it is easy to decrease
the conductivity and to convert Type N samples into Type S. One method is the
deliberate introduction of defects. The chemical structure formula in Figure 9.58
shows an O=C—CH2 group within the polyacetylene chain. Such groups cut the
conjugated system into shorter segments, and the conductivity can be studied
as a function of the average segment length. The result of such an investigation
is shown in Figure 9.58. There are two sets of samples. The samples have been
segmented first and then doped to 3.5% and 15% iodine. We see that the conduc-
tivity decreases exponentially with the defect concentration, or, in other words, it
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Figure 9.55 Temperature dependency of the
conductivity of undoped polyacetylene
according to Epstein et al. [51]. The solid line
corresponds to the power law 𝜎 ∼ T 14.
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Figure 9.56 Negative (metallike) temperature coefficient of the conductivity of highly
conducting iodine-doped Type N polyacetylene [52].

increases exponentially with the segment length (in the range of lengths studied,
i.e. from about 20 to 100 Å) [53].

9.11 Hopping Conductivity: Variable Range Hopping
vs. Fluctuation-Assisted Tunneling

As already stated the experimental data on the conductivity of conjugated
polymers can be explained by hopping mechanisms. This is with the exception
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Figure 9.58 Conductivity of doped polyacetylene as a function of the defect concentration.
Defects interrupt the conjugated system of double bonds (“segmented polyacetylene”) [53].

of highly conducting, highly oriented “Type N” polyacetylene, where metallic
(band) conductivity has to be assumed. We also know that “hopping” is an abbre-
viation for phonon-assisted quantum mechanical tunneling and that the tem-
perature dependency of hopping conductivity is described by soft exponential
equations. Hopping, of course, is an anthropomorphic term and reminds us of a
man crossing a river by jumping from stone to stone (Figure 9.59). The stones are
spread out at random. It is quite obvious: the more stones, the higher the con-
ductivity. Also, the alternating current (AC) conductivity will be greater than the
DC conductivity. Coming to a place where the next stone is far away, the hop-
per has to rest for a long time to sufficiently recover before he/she can do the
big jump. While still waiting the field will reverse and he/she could do an easy
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Figure 9.59 Hopping transport: man trying to cross a river by jumping from stone to stone.
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Figure 9.60 Electronic-level scheme of a disordered solid to demonstrate the hopping
conductivity (CB, conduction band; VC, valence band; EF, Fermi energy; W , energetic distance
between states; and R, local distance between states).

hop backward. Whenever the field changes with high frequency, the hopper will
just head back and forth between near stones. This is the pair approximation to
hopping conductivity [54].

To discuss the temperature dependency of hopping conductivity, we have to
assume that in addition to the random special distribution of the stones in the
river, there is also a random distribution in height. Furthermore, on a warm day
it is easier to hop up onto a high stone. At this point the anthropomorphic model
begins to fail, and it is more reasonable to look at the band structure representa-
tion in Figure 9.60. There are localized states in the gap, randomly distributed in
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space as well as in energy. The Fermi energy level is about at gap center, the states
below EF are occupied, and those above are empty (except for thermal excita-
tions). Electrons will hop (tunnel) from occupied to empty states. Most of the
hops will have to be upward in energy. At high temperatures there are many
phonons available that can assist in upward hopping. As these phonons freeze
out, the electron has to look further and further to find an energetically accessible
state. Consequently the average hopping distance will increase as the temperature
decreases, hence the name variable range hopping. Since the tunneling proba-
bility decreases exponentially with the distance, the conductivity also decreases.
But, as already mentioned, the decrease is smoother than in a semiconductor
with a well-defined gap, because there is a continuous distribution of activation
energies (energetic distances between states).

The calculation leads to a “soft exponential equation” (cf. Eq. 9.20):

𝜎 = 𝜎0 exp[−(T0∕T)𝛾 ] (9.20)

where 𝛾 depends on the dimensionality d of the hopping process:

𝛾 = 1∕(1 + d) (9.21)

For three-dimensional VRH, 𝛾 = 4, and we get Mott’s famous “T−1/4 law” T (ln
𝜎 proportional to T−1/4) [55]

𝜎 = 𝜎0 exp[−(T0∕T)1∕4] (9.22)

with

𝜎0 = e2N(EF)Rvph (9.23)

where R is the average hopping distance,

R = [(8∕9)π𝛼N(EF)kBT]−𝛾 (9.24)

and

T0 = [8𝛼3∕9πN(EF)kB] (9.25)

with N(EF) as electronic DOS at the Fermi energy, 𝛼 as inverse localization
length (spatial extension of localized wavefunction), and 𝜈ph as typical phonon
frequency.

As already stated, Eq. (9.22) is consistent with the temperature dependence of
the conductivity shown in Figure 9.56. It turns out that any 𝛾 value between 1/2
and 1/4 fits the experimental data, so that it is difficult to distinguish between
one-, two-, or three-dimensional VRH.

In Eq. (9.22) there are two general parameters: 𝜎0 and T0. Both depend on the
microscopic parameters 𝛼 and N(EF) (Eqs. (9.23)–(9.25)) of which the former
is the inverse spatial extension of the localized electron wavefunction and the
latter the electron DOS at the Fermi level. If doping creates defects and defects
give rise to states in the gap, N(EF) will be roughly proportional to the doping
concentration y and we obtain:

ln 𝜎 ∼ y−𝛾 (9.26)
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Figure 9.61 Conductivity of
iodine-doped polyacetylene vs.
doping concentration. The solid
curve corresponds to a fit of the
variable range hopping model.
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Figure 9.61 shows a fit of Eq. (9.22) to the data displayed above. It is clear that
the model of VRH explains the doping dependency of the conductivity quite well.
The dependency on the localization length can be studied in segmented poly-
acetylene. We assume that the localization length is proportional to the segment
length [56], leading to an approximately exponential decay for the conductivity
when the segments are shortened.

A large electronic DOS implies both high conductivity at room temperature
(large 𝜎0 in Eq. (9.23)) and small temperature dependency of the conductivity
(small T0 in Eq. (9.25)). This correlation is evident from the “universal curve” in
Figure 9.62, where T0 is plotted vs. the room temperature value of the conduc-
tivity for various conducting polymers [57].

It has already been mentioned in connection with the man trying to cross a
river by jumping from stone to stone that in hopping transport the AC con-
ductivity is higher than the DC conductivity. Figure 9.63 shows the frequency
dependency of undoped polyacetylene (i.e. only accidentally doped by oxygen
and other atmospheric contaminations). The curves refer to different tempera-
tures. At low frequencies the conductivity is constant; from a certain point on it
increases more or less linearly with the frequency. The higher the conductivity
at zero frequency, the higher the onset frequency. This relation is quite general,
regardless of whether we change the low frequency conductivity by heating, or
doping, or using a different sample. The solid lines in the graph correspond to
calculations by Ehinger et al. [58], who combined VRH and pair approximation
to form the “extend pair approximation model” [59].

The data in Figure 9.63 were taken from undoped polyacetylene. In doped
polyacetylene the conductivity is so high that the onset frequency is not in the
hertz or kilohertz regime, but in the gigahertz region. Therefore the frequency
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Figure 9.64 DC and microwave
conductivity of iodine-doped
polyacetylene and fit of
extended-pair approximation [45]:
○, 30 Hz; •, 9.9 GHz.
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dependency is found in the microwave region (10 GHz). In Figure 9.64 the
temperature dependencies of DC (in this case 30 Hz is close enough to DC)
and AC conductivity at 10 GHz are shown for two differently doped poly-
acetylene samples [47]. The abscissa scale is in T−1/4, so that a straight line is
obtained when Mott’s law is fulfilled. It can be seen that, as expected, the AC
data are situated above the DC data. The model parameters for the extended
pair approximation can be obtained from a fit to the DC data, allowing the
calculation of the microwave conductivity. Consequently the model predicts
the experimental results reasonably well (with the exception of the values at
high temperatures), where the approximation in the model overestimates both
DC and AC conductivity (Mott’s T−1/4 law is a low-temperature approximation
to VRH).

The model of VRH assumes a random distribution of localized states. If
the distribution is not random and the defects tend to cluster, the model
of fluctuation-induced tunneling (FIT) is more appropriate [60]. This model
assumes metallic islands in an insulating matrix. Particles of carbon black
or aluminum flakes in a thermoplastic polymer are typical examples. Other
examples are the coexistence of doped and undoped regions in a conjugated
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polymer, crystalline and amorphous domains, or disordered fibers. Tunneling
between large metallic particles is temperature independent. The tunneling
probability is just a function of the barrier width and the barrier height. The
number of electrons on a particle will fluctuate thermally, however, and the
electrostatic potential will also fluctuate when the particles are small. Therefore
tunneling between small particles is a superposition of phonon-assisted and
temperature-independent processes. Hence, the VRH equation has to be
replaced by Eq. (9.27), which contains T1 as an additional parameter:

𝜎 = 𝜎0 exp
[
−

T0

T1 + T

]
(9.27)

It leads to constant conductivity for T >T1 and to activated behavior for
T <T1, with the parameters 𝜎0, T0, and T1 depending on the geometry of
the tunnel barrier and the size of the conducting particles. Experimental data
on heavily doped polyacetylene (Type S) and a fit of Eq. (9.27) are shown in
Figure 9.65.
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Figure 9.65 Temperature dependency of the DC conductivity of heavily (iodine) doped
polyacetylene and fit of the model of fluctuation-induced tunneling. Solid curve: theoretical fit.
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9.12 Highly Conducting Polymers

We mentioned that there are two types of conducting polymers at least in poly-
acetylene: Type S, in which charge transport occurs by hopping, and Type N,
where there is band conductivity. Here we examine and discuss Type N poly-
acetylene. It should be pointed, however, out that there do exist other heavily
doped, metallic-like polymers [61] (in the sense that the conductivity stays finite
as T → 0). But it isn’t clear if these polymers represent the N-type nature of poly-
acetylene. Generally though, our discussion should apply to any polymer that may
exhibit band-like conducting behavior.

At the ICSM meeting in 1986 in Kyoto, Naarmann announced that he mod-
ified the Shirakawa synthesis [62] and prepared a highly stretchable version of
polyacetylene. After iodine doping conductivity values of about 100 000 S/cm
could be obtained. In the following years he would even further increase the
conductivity [63]. Naarmann sent several samples to the University of Bayreuth,
and while none of these did exhibit conductivity values above 100 000 S/cm,
𝜎 > 80 000 S/cm was confirmed [3].

Naarmann’s idea was to slow down the polymerization process by aging the
catalyst and by dissolving it in a viscous solvent such as silicon oil. Slower
polymerization should lead to polymer films of higher perfection. Following
this route, Tsukamoto et al. [49d, e] further improved the synthesis by using
decaline as solvent. Subsequently many research groups tried to repeat Naar-
mann’s or Tsukamoto’s syntheses, but never succeeded to reach conductivity
values of 100 000 S/cm or above. Today it is generally accepted that 20 000 or
30 000 S/cm can be obtained in a reproducible way, but to go beyond requires
lucky circumstances that are not yet accessible to quantitative analysis. To
obtain 30 000 S/cm polyacetylene, two further routes exist: either the catalyst
is dissolved in cummene followed by removing most of the solvent before
polymerization (“solvent-free route”), or the solvent is a liquid crystal, and the
polyacetylene film grows epitactically (or quasi-epitactically) on its surface [64].

Some years ago the aim of a European joint project [65] was to synthesize
polyacetylene with conductivities greater than 100 000 S/cm following one of the
above routes, but 40 000 S/cm was the highest achieved. A further goal was to cor-
relate the conductivity of highly conjugated polyacetylene with other measurable
material parameters. But no correlation was found. Apparently, the conductivity
is by far more sensitive to impurities and imperfections than any other parameter.

For an ideal single crystal of polyacetylene, we can predict its conductivity by
theoretical means. The ideal crystal consists of “sufficiently long” well-ordered
polyacetylene chains. It is doped to a high level, the dopant ions are between the
chains, and their electrostatic potential is screened so that the electrons moving
along the chains do not notice it. Because of the high doping and some interchain
coupling, the Peierls transition is suppressed. This way a very anisotropic metal is
obtained. The electrons mainly move along the chains and hop only very seldom
to a neighboring chain. In case electrons are scattered by phonons, it is predomi-
nantly umklapp scattering, in which the electron momentum is reversed. Because
of energy and momentum conservation, in highly anisotropic polyacetylene there
are only very few phonons that can participate in umklapp processes, namely,
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Figure 9.66 Temperature dependency of the conductivity of highly conducting polyacetylene
samples. The curves refer to different iodine concentrations.

those phonons whose wavevector is twice the Fermi wavevector of the electrons
kF . Because of the lack of appropriate phonons, the “theoretical” conductivity of
polyacetylene is very high. Estimates yield as much as 2× 107 S/cm at room tem-
perature, which is about 30 times the conductivity of copper [66]. Moreover, 2kF
phonons have a fairly large energy (large, compared with the sample tempera-
ture), so they can easily be frozen out; the conductivity of ideal polyacetylene will
rise exponentially, approaching infinity at absolute zero.

Of course, the theoretical limit is not observed in experiments. But, at least for
some samples, the temperature coefficient of the conductivity is negative [67].
Figure 9.66 shows a plot of the temperature dependence of the conductivity for
several iodine-doped Naarmann polyacetylene samples. In the inset the maxi-
mum around 250 K is clearly seen.

There are several models assuming the coexistence of highly and less conduct-
ing domains in polyacetylene. The model of FIT has already been mentioned.
Kaiser [68] proposed other models for heterogeneous polyacetylene samples.
These models evaluate the thermopower as well.

The high conductivity of doped conjugated polymers has stimulated many
ideas for application. Many of these lie in flexible and printable electronic
and electro-optic devices. However, to realize these applications, a deeper
understanding of charge transport is a matter of first priority.

9.13 Magnetoresistance

In a magnetic field the Lorentz force bends the paths of the charge carriers as dis-
cussed in Chapter 8. This leads to a reduction of the effective mean free path and
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thus normally to a decrease of the mobility and to an increase of the resistivity.
The change of the resistance in a magnetic field is called magnetoresistance. In
most metals this effect is rather small, just a few percent at room temperature. It
increases at lower temperatures and reaches some limit.

The magnetoresistance depends on the band structure, the details of the scat-
tering mechanisms, the morphology and homogeneity of the sample, and even
on the shape of the sample. Evidently, dimensionality will play an important role.
Interestingly, there are several conditions where negative magnetoresistance can
occur. This means the resistance decreases when a magnetic field is applied.

Giant magnetoresistance (in the order of 100%) and colossal magnetoresistance
are found in certain heterogeneous (layered) systems and are used to read data in
hard disk drives and to store data in magnetoresistive memories. (The 2007 Nobel
Prize in physics was awarded to Albert Fert and Peter Grünberg for the discovery
of giant magnetoresistance.)

Let’s look at some examples of magnetoresistive behavior in conducting
polymers and carbon nanomaterials. In Figure 9.67, the resistance change
of iodine-doped polyacetylene films in magnetic fields up to 7 T is plotted
[69]. Depending on the doping level, we see both positive and negative mag-
netoresistances in the range of a few percent. As stated above, a positive
magnetoresistance would be expected from bending the path of charge carriers
by the Lorentz force. But also in hopping conductivity, we would expect a positive
magnetoresistance, because the extension of the localized states will shrink and
the electrons will have to hop farther. To explain a negative magnetoresistance,
we have to evoke such effects as reduced scattering on the surface of polymer
fibers (bundles) or week localization and anti-localization [70].
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Figure 9.67 Positive and negative magnetoresistance in iodine-doped polyacetylene at 4.2 K
[69].
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Figure 9.68 Graphene ring and contacts to study
the Aharonov–Bohm effect (scale bar = 1 μm) [71].
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Figure 9.69 Aharonov–Bohm oscillations in graphene
[72].

A simple argument for negative magnetoresistance is associated with interfer-
ence of Bloch waves. Think for a moment of the heterogeneous spaghetti mor-
phology we have shown for polyacetylene. This morphology can be seen as tiny
loops throughout the volume. Of course, carriers moving through these loop-like
conduits will interfere with each other from junction to junction creating an effect
not unlike our modified, low-dimensional Drude metal of Chapter 8. A change
in the overall interference pattern will be seen in a magnetic field because the
different branches of a conducting loop in a magnetic field will pick up differ-
ent phase shifts. This is the famous Aharonov–Bohm effect, applied over and over
again throughout the heterogeneous structure. Figure 9.68 shows a micro-loop
of graphene, patterned into graphene by electron beam lithography and plasma
etching [71]. A very nice example of Aharonov–Bohm oscillations in graphene
is shown in Figure 9.69 [72]: due to the periodic change between constructive
and destructive interference where the two branches of the loop merge, the mag-
netoresistance oscillates, and depending on which side of the peaks we are, the
magnetoresistance is either negative or positive. Of course our disordered net-
work will average this effect over many, many loops and junctions. But if the fibers
are “sufficiently crystalline” and the Bloch waves sufficiently coherent, negative
magnetoresistance is a reasonable expectation. Similar arguments hold for dis-
ordered metals and semiconductors, where there are conductive loops around
defect clusters.

A different kind of oscillation is seen in context with the quantum Hall effect.
In that case there are steps in the Hall voltage and oscillations in the magnetore-
sistance (Shubnikov–de Haas Oscillations) whenever the Lorentz force bends the
electron paths to closed circles and the circles hit the Fermi surface [73].
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Figure 9.70 (a) Perpendicular and (b) parallel magnetoresistance of a SWNT rope, dependent
on the orientation of the magnetic field. The measurements were carried out at liquid helium
temperature [74].

The magnetoresistance of a rope (bundle) of single-walled carbon nanotubes
is shown in Figure 9.70 [74]. If the magnetic field is perpendicular to the bundle,
a pronounced negative magnetoresistance is observed, some 25%, perhaps again
due to weak localization. In parallel field orientation the effect is smaller, and
some oscillation is superposed, perhaps an indication of the Aharonov–Bohm
effect (electron paths clockwise and counterclockwise around the tubes?) or uni-
versal conductance fluctuations? (Figure 9.70).

A very special experiment can be carried out on an individual single-wall car-
bon nanotube: magnetochiral anisotropy [75]. When a current is passing along
carbon nanotubes, depending on how the nanotubes are rolled (“chiral angle”),
there is a helical component of the current, and the nanotube acts like a tiny
solenoid (Figure 9.71). This solenoid produces a magnetic field, and depending
on the direction of the field with respect to the current flow, the solenoid field
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Figure 9.71 A very special example of magnetoresistance:
magnetochiral anisotropy [75].

is added or subtracted from the applied magnetic field. The carbon atoms on
the tube experience the total field, and the magnetoresistance depends on the
direction of the current flow. The effect is very small, but it can be seen in the
experiment, and the distribution of added or subtracted fields corresponds to
the distribution of the nanotube chiralities.

Another magnetotransport measurement on individual nanotubes is the inves-
tigation of spin valves. The device is schematically shown in Figure 9.72a [77]:
here the carbon nanotube is put in field-effect transistor configuration. But now
the metal contacts forming source and drain are ferromagnetic, e.g. cobalt. From
the magnetized source contact polarized electrons flow into the nanotube, i.e.
all the spins of the conduction electrons point in the same direction. If the elec-
trons don’t change their spin (depolarize) while moving along the tube, they can
only continue to the drain contact, if this is magnetized in the same way: the
device is in the low resistance state. If source and drain are oppositely magne-
tized, polarized electrons cannot flow, and the device is in the high resistance
state. If we put the device into a magnetic field and sweep the field strength, source
and drain will flip their magnetization at different field strengths, because of dif-
ferent coercive forces in source and drain (due to slight geometrical differences
in the contacts). The magnetoresistance behavior we expect to see is shown in
Figure 9.72b, and what we actually see is depicted in Figure 9.72c.

To observe the signal in Figure 9.72c, the nanotube had to be cleaned, i.e. a
fairly high electric current had to be passed through the nanotube so that it
would warm up by Joule heating (“current-induced annealing”) and adsorbed gas
molecules would leave. Adsorbed gas molecules act as scattering centers, and in
these scattering events the electrons can change their spin (spin-flip scattering).

Perhaps you have noted that in this section we have been talking about two dif-
ferent interactions of electrons with magnetic fields. In the first part the Lorentz
force was important. This acts on the motion of the electrons: it bends the path
of the electrons in an “orbital” effect. In the spin valve the field acts on the spin of
the electrons. In general, a magnetic field will influence both spin and motion of
the electrons.

In a strictly one-dimensional system, the path of the electrons cannot bend. So
there should be spin effects only. And if conduction is by spinless solitons, there
should be no magnetoresistance! Young Woo Park from Seoul National Univer-
sity and his team [78] compared the magnetoresistance of very thin and very
well-ordered polyacetylene fibers with that of similar fibers of polyaniline and of
polythiophene. Under certain conditions they found zero magnetoresistance up
to 35 T in polyacetylene and 20–40% magnetoresistance in the other polymers.

In Park’s experiments [73], electrical and magnetic fields and strain fields in
the sample act together on the charge carriers typical for conjugated polymers:
solitons, polarons, bipolarons, singlet excitons, and triplet excitons. A similar
situation should exist in field-induced organic light emitters discussed below.
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Figure 9.72 (a) A carbon
nanotube spin valve: the
device is like a nanotube
field-effect transistor, but
source and drain are
ferromagnetic metals [75].
(b) Signal expected from a
perfect spin valve [75].
(c) Signal of a real carbon
nanotube spin valve [76].
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They are driven by high frequency (some 50 kHz) AC electric fields, which
couple to magnetic fields (as AC fields do according to Maxwell’s equations).
Recently a negative magnetoresistance has been suggested in these systems, and
the negative magnetoresistance might be related to singlet–triplet conversion
and to the high light output of the organic emitters [79].
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9.14 Organic Molecular Devices3

There is more than one use of the term molecular electronics or organic electron-
ics. In this text we tend to mean the use of synthetic metals and organic semi-
conductors to create micron-scale electronics. This is intended to distinguish
from molecular-scale electronics, which refers to the use of individual molecules
as active electronic elements. Molecular materials for electronics are not new
of course. Even the etymological roots of electronics lead to a molecular mate-
rial: to the natural resin amber, which in Greek is “electron” and where electri-
cal phenomena were first observed (charging by friction). Commonly molecular
materials have served as insulators. Other well-known molecular materials for
electronics are photoresists used in the photolithographic process for the pro-
duction of microelectronic devices. Of course such materials are most interesting
when they represent the active part of a device or circuit; that is, they must be elec-
troactive (conjugated) or photoactive. But given what we have just learned above,
how do we implement such materials in electronics? Does it work in an analogous
way to semiconductors? Exactly what are these organic devices?

9.14.1 Molecular Switches

There are an enormous number of switching molecules. In fact, every molecule
has several excited states and transitions between these states can be regarded
as “switching.” Some molecules are bistable and are switched back and forth by
external triggers; others need a trigger to switch only one way; they switch back
spontaneously. The latter case is rather trivial. An example is the absorption of
light and the subsequent decay of the excited state. But even this trivial behavior
can be used for data processing (like the polyacetylene holographic computer).
In this section we present two switching molecules: one because of its relation-
ship to conjugated polymers and the other because of its complex conformational
changes during switching – yielding interesting physics.

In Figure 9.73 the chemical structure of 7-piperonyl-7′, 7′-diapocarotene-7′-
nitile (PCNC) is shown; a D–π–A molecule with a piperonyl group as donor and
a cyano group as acceptor. As indicated before the excitation of this molecule
corresponds to pushing an electron from the donor toward the acceptor. An addi-
tional electron on a polymer chain behaves like a soliton, and quantum chemical
calculations show indeed that a phase-slip center in the charge distribution is
created [80]. Solitons lead to states in the gap, which can be seen in optical absorp-
tion spectra.

Figure 9.74 shows the results of an investigation of photoinduced absorption in
PCNC [81]. The sample is irradiated by light with quantum energy larger than the
π–π* gap so that many molecules are pumped into the excited state. The absorp-
tion difference between pump-on and pump-off is recorded.

3 Strictly speaking this section is not about transport at all. It is included to give some insight into
how the application of polaronic materials might compare with those that utilize a more “bare
charge” conduction mechanism.
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Figure 9.73 Donor–acceptor polyene, a D–π–A molecule for photoinduced absorption.
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Figure 9.74 Photoinduced absorption of donor–acceptor polyene. The dashed line
corresponds to normal absorption. Important features are the bleaching dip at 2.2 eV and the
photoinduced peak at 1.2 eV, which corresponds to states within the π–π* gap [2].

The figure shows a photoinduced peak at about 1.2 eV and a bleaching dip,
which is due to the reduction of the ground-state population by constant pump-
ing. The peak results from states in the gap that do not exist in the ground state.
It is reasonable to assign this peak to “solitons.” We “switch” the molecules by
irradiating with light, and we “read” the state of the molecule by absorption spec-
troscopy. The purpose of the experiment is not, however, to demonstrate the pos-
sibility of molecular switching. We want to investigate the excited state. From the
position of the photoinduced peak, information can be obtained on whether the
soliton concept can be applied reasonably well to short-chain polyenes, whether
it will survive the attachment of donor and acceptor groups at the chain ends,
etc. Short polyenes are usually treated by ab initio calculations [82] that do not
explicitly make use of solitons or polarons. However, the short-chain approach
must continuously fit to the long-chain approach.

The bianthrone molecule is shown above. The ground state is planar and
puckered, and the excited state twisted and unpuckered. Puckering and twisting
can be followed from the temporal evolution of the absorption spectrum. For this
purpose the sample is irradiated by a short and intensive light pulse (1 ps, 1 mJ)
that triggers the switching, and then wideband absorption spectra are taken
in intervals of several picoseconds or nanoseconds. The experiment requires a
fast optical pump-and-probe setup and is about as sophisticated as the soliton
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Figure 9.75 Temporal evolution of the absorption spectra of unsubstituted, BA (a) and
substituted, BATMF (b) bianthrone. The time indicated is the delay of the white light pulse with
respect to the switching pulse (pump pulse) [83].
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Figure 9.76 Chemical formula of (a) unsubstituted bianthrone (BA) and (b) bianthrone
substituted with tetramethylfulvalene (BATMF).

lifetime investigation described in Section 5.9 (short and intensive laser pulses,
picoseconds and nanoseconds delay lines, conversion into picoseconds white
light pulses, diode array as spectrometer). Figure 9.75 shows the comparison of
the time evolution of the absorption spectra of substituted and unsubstituted
bianthrone (BATMF and BA, respectively).

The chemical structures are shown in Figure 9.76. The features in the absorp-
tion spectra can be assigned to twist and pucker changes [83]. As a striking
result, we see that BATMF substitution stabilizes the excited state as shown
in Figure 9.77. Systematic studies of this type should finally help to design
molecules with time constants optimized to the intended application.
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Figure 9.77 Decay of the excited state in substituted bianthrone (BATMF) compared with that
of the unsubstituted bianthrone (BA) as an example of molecular engineering for optimizing
decay time constants [83].

9.14.2 LB Diodes

An elegant use of heterojunctions based on Langmuir–Blodgett (LB) films has
been demonstrated by Fischer et al. [84] wherein gold microelectrodes are cov-
ered with a few LB layers of a palladium phthalocyanine derivative, followed
by layers of a perylene derivative, and finally followed by evaporated gold top
electrodes. This last step must be done without destroying the delicate organic
structure underneath (Figure 9.78). The device structure is small, so several of
the diodes are placed on the silicon chip substrate to ensure pinhole-free can
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Figure 9.78 Rectifying organic heterolayers. (a) Palladium phthalocyanine. (b) Perylene
derivative. (c) Arrangement of sandwiched layer structure. The substituent groups R in (a) and
(b) have been attached to facilitate film formation in the LB technique.
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Figure 9.79 Symmetric current–voltage characteristic of Au/PcPd/Au and Au/PTCDI/Au
sandwiches. The structures block up up to a threshold voltage and conduct above.

be achieved and current–voltage characteristics can be measured for multiple
devices.

Figure 9.79 shows the current–voltage characteristics of Au/PcPd/Au (dotted
lines) and of Au/PTCDI/Au (solid line) devices. These characteristics are sym-
metric, and current is blocking up to a well-pronounced threshold. The threshold
is interpreted as the coincidence of the Au Fermi level with the π or π* band edge
in the organic layer.

Figure 9.79 shows the asymmetric characteristics of an Au/PTCDI/PcPd/Au
device, with a positive threshold of 0.9 eV and a negative threshold of −0.5 eV. At
a “working point” of 0.6 eV, a rectification ratio of several orders of magnitude is
obtained. Additional interesting features are the steps in the I–V characteristic
shown in Figure 9.80. These are interpreted as single-electron effects.

Tentatively the π electron systems of the phthalocyanine and perylene are
summed as a system of quantum dots charged by single electrons and blocking
further electrodes from following (unless the voltage is raised high enough to
surpass the Coulomb barrier, hence the steps). Here a caveat has to be added: if
the evaporated top electrode is not perfect, small gold particles might migrate
into the LB film, and the features of Figures 9.79 and 9.80 can also be interpreted
as tunneling between the electrodes and the gold nanoparticles.

9.14.3 Organic Light-Emitting Diodes

There are, in fact, several classes of light-emitting devices based on organic mate-
rials. The first type, an important one, is the OLED, which is the simplest of the
active light-emitting devices discussed below and now commercially available in
cell phones, displays, and some lighting applications. The second type of device is
the AC-driven, field-activated organic emitting device. These devices are a much
more recent development and have some unique features of their own. Finally,
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Figure 9.80 Asymmetric current–voltage characteristic of a Au/PTCDI/PcPd/Au
heterostructure. Rectifying properties are observed when the device is operated between 0.5
and 0.9 V. The steps in the characteristic are interpreted as single-electron charging of the
organic macromolecules.

Figure 9.81 The candle is among the first
“organic light-emitting devices.” A standard
candle burning at about 0.1 g/min delivers
roughly 80 W of heat and ∼13 lm of light. This
yields a luminous efficacy of roughly
0.16 lumens per watt (LPW). Today some still use
the candle as a standard of measure – candela
and candle power.

the third is organic laser. Electrically stimulated organic lasers have yet to be
achieved, and there are some daunting barriers to overcome for this. However,
optically stimulated organic lasers are widely studied. Notice that here we leave
out chemiluminescent emitters since they are based on entirely different princi-
ples. Likewise, an obvious omission is the candle, which certainly qualifies as an
organic light emitter (Figure 9.81).



366 9 Polarons, Solitons, Excitons, and Conducting Polymers

Each of the classes cited above has a common underlying mechanism we are
interested in that ties them with the dimensionality of the organic material, that
is, the creation of excitations, polarons and excitons, and their subsequent decay
with the emission of light. Organics, or if you prefer synthetic metals, present
a slightly more complex set of circumstances than what occurs in inorganic
solid-state light-emitting diodes or LEDs. This comes from excitations that can
occur as singlet spin states or triplet spin states, and these have different lifetimes
and recombination dynamics. There are other, more subtle differences as well. In
this section we will examine the basic mechanisms one is faced with in organic
emitters. But for a more detailed examination, the reader is encouraged to read
the many treatises on organic emitters now available [85].

9.14.3.1 Fundamentals of OLEDs
OLEDs are the first molecular electronic light-emitting systems to reach the con-
sumer market (organic lasers have been used in research labs for longer). OLED
technology is now established in cell phone displays, flat panel displays, car dash-
boards, handheld electronics, and other applications. However, this doesn’t mean
that basic research has stopped. Indeed, since their introduction, growth in the
research field has continued. Specifically improvements to lifetime, processing
(for cost), flexibility, and robustness against laminate failure, as well as efficiency
and color control (white), are being pursued. Figure 9.82 shows a schematic view
of a standard research device.

The overall design of an OLED is conceptually quite simple. A thin organic
film is sandwiched between two electrodes, one of them semitransparent and
one reflective. A voltage is applied: one electrode injects electrons and the other
injects holes into the film. The polymer lattice relaxes, and electrons and holes
form solitons or polarons or whatever electron–lattice coupling is required. These
charged carriers flow through the volume of the film as allowed by the applied
potential, until a positive and a negative meet. Then the charge carriers form a
weakly bound, short-lived pair (exciton) that will ultimately recombine, and light
is emitted (luminescence). Generally speaking one must be careful to ensure that
the positive charge carriers (holes) and negative charge carriers (electrons) meet
in the middle of the emitting materials. This is known as the recombination zone

V
+

–

Glass substrate

Metal contact such as AI or
Ag (200 nm)

Electron injection layer
such as LiF (5 nm)

Emitter such as PFO (100 nm)

Hole buffer such as PEDOT
(150 nm)

Transparent
conductor such
as ITO or AZO

Figure 9.82 Schematic setup of an organic light-emitting diode (OLED).
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of the device. However, electrons and holes (or their respective excitations) might
move at very different rates in the materials. That is, they usually have different
mobilities under the applied field. Holes are typically faster, so additional buffer
layers are used to balance this charge mobility problem and to provide “energetic
confinement” within the emitting layer. In Figure 9.82, we show the use of LiF
to match the work functions of the injected electrons from metal to the emitter.
This helps to lower the operational voltage and block holes from leaving without
recombining. The use of polyethylene dioxythiophene (PEDOT) against the ITO
does the same thing for the holes plus it gives the holes a long path to get into
the emitter, allowing time for the slower electrons to make it into the middle of
the emitter before they arrive. As mentioned earlier, recombination requires that
electrons and holes be proximal, so if they happen to miss each other on their
flight through the emitter, the buffer layers help to confine them by providing a
“step-up” in potential energy. So the basic design of the OLED structure is really
a balance of these three layers. If other colors are desired, then the emitter can be
coupled with multiple emitters, and the structure becomes more complicated.

The injection process is outlined diagrammatically in Figure 9.83. There are two
recombination channels: a radiative and a non-radiative one. For efficient OLEDs
the radiative channel must be more pronounced. Non-radiative recombination
generates heat and limits the lifetime of the device. Furthermore, carriers should
not get lost by falling into traps or (as discussed in Section 9.14.3.1) by trans-
ferring to the opposite electrode without meeting a partner and recombining.
Finally the polymer and other parts of the device must be sufficiently transparent
to the generated light so that it does not get reabsorbed before leaving the OLED.
Here we do note one fine point in our nomenclature. In semiconductor physics
LED means light-emitting diode, and the diode is a p-/n-junction or Schottky
junction. In this book we are discussing organics more broadly and so we use the
more general expression: light-emitting device. With this interpretation of the
letter “D,” we want to indicate that the organic-emitting film might be a p-type

–

+

LUMO

HOMO

P– P+Exciton

hv

Figure 9.83 The injection of positive and negative charge results in charged polarons. The
polaronic states sit within the HOMO–LUMO gap of the active material as discussed in
Chapter 7. Radiative recombination yields light.
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or n-type semiconductor, but it also could be an intrinsic semiconductor with an
equal concentration of electrons and holes. In particular, both types of carriers
will be injected for the OLED to work. Then the device would not be rectifying
unless electrodes with different work functions are used.

In OLEDs we must consider two different types of organic emitters, those based
on conjugated polymers and multilayer dye, or small molecule, OLEDs [86]. Reli-
able OLEDs were first reported by a group at Eastman Kodak: C.W. Tang and
S. VanSlyke in 1987, using small molecules (Alq3) [87]. Burroughs et al. [31c]
and several other groups [88] followed quickly with polymer-based devices. The
behaviors and characteristics of these two types of devices are essentially the same
although transport and recombination details do differ slightly.

OLEDs have several advantages over their inorganic counterparts. Among
them is the ability to use simple processing steps – such as solution
processing – to fabricate OLEDs, lowering overall costs. Another impor-
tant advantage is the color tunability. Since the range of synthesis of the emitter
molecule is practically unlimited, a very wide range of colors can be created
in the emission spectrum. Aiding in this color tunability is the fact that many
emitters can be created with relatively narrow or broad color emission, allowing
for color overlap and color mixing when multiple emitter molecules are used.
Recall that it takes more than a mixture of pure RED, GREEN, and BLUE, to
create ALL the colors to which the human eye is sensitive.

The use of different color components actually comes in handy for other rea-
sons. As noted previously, the excitons can form in a singlet or triplet spin state.
Singlet states are relatively short-lived; they decay rapidly to yield visible light.
However triplets are long-lived and decay through non-radiative processes. Gen-
erally, there are three triplets formed for every singlet, so this dramatically limits
the potential efficiency of the “singlet only” device. In the late 1990s an elegant
solution was found to address this problem [89]. Phosphorescent dyes contain-
ing a heavy metal complex was added to the emitting layer. These dyes were, for
example, Ir(ppy)3,4 FirPic,5 and others containing Ir. In these systems, the singlet
excitons would decay quickly giving off light. But the triplet excitons would reso-
nantly transfer their energy through Dexter processes6 to the dye. Then, through
spin–orbit coupling associated with the metal ion, the phosphorescent dye would
emit light as well. This “secondary emission” can be very efficient, and it provides
another complementary color to the singlet emission. Since the dyes are small
and introduced in small amounts, there is typically no phase separation within
the layer during operation.

In addition to the use of dyes, several other emitter additives have been widely
studied. Again, as in the case of dyes, only small quantities of such impurities
are blended into the emitter host. Among these, the use of nanoparticles such
as quantum dots and carbon nanotubes are quite relevant to this discussion.
Such additives can have multiple effects within the electroactive matrix such as

4 Tris[2-phenylpyridinato-C2,N]iridium(III).
5 Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III).
6 See Exploring Concepts.
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Figure 9.84 Band diagrams for applying contacts and subsequent injection of charge into
organic layers.

providing color components, modifying energy exchange mechanisms through
antennae effects, and modifying transport properties.

To more fully understand the operation of the OLED configuration, the prob-
lem is typically broken down into three parts: charge injection, charge transport,
and charge recombination. Then the principles of detailed balance are used to
account for each charge and each photon, giving the overall expected perfor-
mance of the device. Doing this for double carrier injection has been a difficulty
even in solid-state systems with long-range order. However, short-range order
and hopping mechanisms make the problem considerably more difficult with
organics. We explore these three parts schematically here.

Beginning with charge injection, we first imagine what local potential barri-
ers to charge injection occur at the internal interfaces between the layers of the
device. We mentioned the electronic efficiency factor above and this is related.
Each interface may have trapping states and potential barriers that cost some
of the applied voltage placed across the stack. Generally, the external contacts
are present among the largest barriers. Shown in Figure 9.84 is an energy level
diagram of a simple, single-layer OLED device, where the organic is depicted as
a fully depleted semiconductor (i.e. no free charge). Notice that the bands are
shown to be flat – no bending due to itinerant carriers.

Qualitatively, before the contacts are added, the Fermi levels of the cathode
and anode are shown as Ef. When brought into contact with the semiconductor
the Fermi levels of the contacts must align across the device. This results in a
built-in potential, V bi, across the organic layer. For an applied potential V app, of
less than V bi, the electric field inside the organic layer opposes charge injection
and forwards drift currents. When V app >V bi, current is injected over the barrier.
Current density and irradiance in the device then increases rapidly. Notice that
the level of the cathode to the polymer band edge might be quite different from
the level of the anode to the band edge; thus to control the necessary voltage for
injection, layers such as LiF are used to change the Fermi level of the contact
material.

The exact mechanism of injection, that is, how the bare charge of the cath-
ode and anode becomes the more exotic excitation of the organic system, is still
not unambiguously understood. However, significant progress has been made
in modeling the process since its first discovery. In fact, instead of the simple
band as shown in our diagram, it is a little more precise to imagine the organic
electronics as a distribution of isolated and localized states [90]. This absence
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of long-range order does have profound effects on all aspects of fundamental
device operation: injection, transport, and recombination. Yet many concepts of
the crystalline system can be transferred. For instance, organic/metal interfaces
can be Ohmic or injection limited [91]. With very few exceptions, most attempts
to model this injection have relied on Richardson–Dushman thermionic emis-
sion [92] or Fowler–Nordheim tunneling [93]. In more advanced treatments, the
disorder of the polymeric materials, or the organic material, suggests that sig-
nificant localization will occur near the injection electrode resulting in increased
reflection probabilities, reduced injection rates due to dipole layers, and a steeper
field dependence of the injected current. It is important however to note that
not all simulations and models yield the same results. In fact, if injection can be
modeled as tunneling for lower currents but thermionic at higher currents, then
injection probabilities will vary widely depending on the regime of conductivity
[94].

The second major step in understanding OLEDs is how the charge is trans-
ported in the organic layer. In fact, this general statement of transport in such
materials has relevance well beyond connections to electronics applications [95],
and we have discussed these mechanisms in this text. Recall that charge trans-
port is typically viewed as a hopping process, where hopping takes place between
sites that are statistically different in their surroundings. Formally, theories such
as Bässler’s (where disorder is distributed using a Gaussian function) have been
quite successful in describing the overall features of transport [96]. The primary
feature of such models is that the mobility of the carriers will be dependent on
the applied electric field and is usually written as

𝜇 = 𝜇0 exp[(𝛽q∕(kBT))
√

F] (9.28)
𝛽 = Poole − Frenkel factor, F = applied field (9.29)

Reflecting on our previous models for injection, it is quite easy to see that such
a system should result in field-dependent mobilities. States introduced into the
gaps will have trapping and detrapping times dependent on the applied field. If the
mobility of the carrier is dominated by these trapping–detrapping events, then
the overall effect will be to build in a nonlinear field dependence to the time of
flight through some part of the material.

Finally, in terms of recombination, there is little doubt that Langevin-type rate
equations dominate in the organic systems [97]. Yet, again, recombination mech-
anisms on a microscopic scale are still lacking. We do know that, in analogy to
crystalline systems, microcavity effects are observed in these systems. Modifica-
tion spectrally and spatially of spontaneous emission rates, using microcavities,
suggests further correlations with solid-state systems [98]. Naturally, spin states
must be considered as well as de-excitation routes that include phosphorescence
(following on with our discussion above).

9.14.3.2 Materials for OLEDs
Electroluminescence in poly(para-phenylene vinylene) (PPV) was discovered by
workers in Cambridge in 1990 [31c]. Since that time, a vast number of poly-
mers have been demonstrated with high efficiencies, multiple colors, and other
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features. In fact, emissive polymers can be thought of as falling into classes: the
phenylene vinylenes, the thiophenes, the pyridines, the polyfluorenes, and more.
Each of these is based on a modification of a more simple semiconducting poly-
mer. Side groups and alterations to the chain are used to alter the overall per-
formance, coloration, and solubility of the polymers. There are now complete
catalogues available from manufacturers of their electroluminescent products.
These will reflect different color options, different balances between hole and
electron mobilities at specified applied fields, etc.

Likewise, the options for resonantly matched, metal-containing dyes have
expanded almost exponentially since they were first introduced into OLEDs.
Many of these are still based on Ir. So for the device builder, one now can look
up a wide range of options for designing the emitter layer to nearly any color and
internal efficacy one wants.

More recently, attempts at making pure white emitters from a single polymer or
a small number of components have been the focus of many chemists. An inter-
esting approach to this is the copolymerization of different color centers along
the same polymer strand. In such an approach the charge is injected at the high-
est energy to enter the blue component bands. The carriers quickly thermalize to
fill the lower-lying energies where they decay to give the colors of each of these
levels. When balanced appropriately, the outcome is a white emission [99].

9.14.3.3 Designs for OLEDs
As we stated above, the process of designing an efficacious emitter comes with
lots of options. But it should be noted that having a really efficient emissive poly-
mer does not always lead to a good OLED. As with any solid-state electronic
device, the engineering of the OLED must take into account contact barriers,
lifetime, diffusion lengths, and more. In our discussion we have already hinted at
this. Here we can be a little more precise as to the design features necessary for
OLEDs.

Generally speaking, the work function of the electrodes must be matched to
that of the polymer of choice. This will dramatically effect the voltage at which the
device operates. UPS (or some equivalent technique) measurements of the work
function are necessary. Since the work function difference between commonly
used metals such as Al and that of the polymer can be large, strategies are usually
employed to modify the metal. This is usually easily done with an addition of a
small amount of alkali metal at the metal contact to manipulate the metal work
function value to match a needed value. Caution must be used with this approach
though since some alkali metals will react with the polymer yielding unintended
consequences. On ITO, the transparent hole injector, it is a little more difficult.
The addition of a PEDOT layer over the ITO can help with this only a little. Addi-
tionally, the PSS usually used to dope the PEDOT will interact with any water
that leaks into the system. This forms an acid that will attack polymers [100].

Furthermore, hole and electron mobilities are not usually the same. So it is nec-
essary to use layer thicknesses arranged such that the electrons and hole arrive
in the center of the luminescent layer at the same time. This is not as easy as it
sounds, and careful time-of-flight measurements are necessary to optimize the
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layer thickness. Really thick luminescent layers will lead to non-radiative recom-
bination and a reduction in performance.

Finally, not all electrons and holes that make it to the center of the active layer
will recombine (either radiatively or not), but rather they miss. So what happens
then? This can lead to what is known as “leakage currents.” These are the carri-
ers that pass straight through the device or that do not recombine in some way
and make it to the opposite electrode. Thus, most designers will choose buffer
materials that do not allow for the opposite charge to be injected into them. For
example, ITO is an excellent hole conductor and quite good at injecting holes.
However, it is a poor electron conductor and does not readily allow for electrons
to “leak” through this contact. Further blocking layers can be added to the device
to help prevent this parasitic process. Some choices are shown in Figure 9.81.
By blocking the leakage currents, the carriers are confined to the emissive layer
giving them more time to interact.

9.14.3.4 Performance of OLEDs
With continuing research and the advent of phosphorescent OLEDs together
with new polymer or small molecule emitters, the performance metrics of OLEDs
are a moving target. What are these metrics? We usually think of power efficiency
and brightness. But this is an incomplete picture of how such devices might actu-
ally compare with other lighting sources. First of all, let’s leave cost out of the
equation for a moment. Then certainly we would characterize the device by:

1. Internal quantum efficiency (IQE), which is how well each injected electron is
converted into a photon.

2. Luminous efficacy of radiation (LER), which is power in and power out of the
emitter.

3. External power efficiency, which measures power in and power out of the
device.

4. Color coordinates for given operational parameters (using some recognized
scale such as the CIE).

5. Brightness.

For modern applications in lighting, usually the power efficiency is among the
most important starting points. Note that here we make the subtle distinction
between efficacy and power efficiency. The efficacy is only the light emerging
from the emitter and the power entering the emitter, whereas the external effi-
ciency includes how much the physical device itself blocks the light from leaving
the emitter and the resistance of the device to the power entering it (the electri-
cal efficiency factor). To determine the power efficiency of a device, we measure
how much power is put into the device (P = VI) and then the amount of radiant
power emitted that is within the response of the human eye (also known as the
photopic response). This measure obviously includes the effects of the physical
structure. If all the power that went into the device comes out in exactly the pho-
topic spectrum, then one would achieve the maximum possible power efficiency
of 683 lumens per watt (LPW). So any lighting device operating at 100 LPW is
producing only a fraction of the light it could produce at maximum efficiency. For
white-emitting OLEDs, a power efficiency of 80 LPW operating at 1000 Cd/m2
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in brightness has been reported. Such devices have internal quantum efficiencies
of ∼85%. Recall from above that for pure fluorescent emission this IQE can be
no higher than 25%, so obviously these devices utilize phosphorescence. These
devices can be quite bright as well with thousands of Cd/m2 observed.

Importantly, the lifetime of OLED devices must be considered. Operating in air,
only a few hours of emission can be expected. This is because of oxidation of the
polymers, delamination of the components, and exposure to atmospheric water.
However, when encapsulated, many thousands of hours can be obtained from
an OLED, even under high brightness conditions. Indeed, lifetimes, efficiencies,
and brightness have improved to the level that such devices are now used com-
mercially. But this has been primarily in pixel formats or backlighting (low light
levels). The use of OLEDs in overhead efficient panel lighting is still progressing
but poses a deeper challenge.

9.14.4 Field-Induced Organic Emitters

There does exist an alternative to OLED. We use the phrase “field-activated”
or “field-induced” electroluminescence to imply that the carriers used to
recombine originate from within the device, and not from the external contacts.
These devices were first fully investigated by Lee et al. in 2005 [101] with a
number of variants on the structure coming quickly afterward [102]. Depending
on the exact structure and on the authors of the papers, there have been
several acronyms proposed for such devices including field-induced polymer
electroluminescent lamp (FIPEL), field-activated organic electroluminescent
lamp (FA-OEL), and AC-OEL. Some even refer to them as AC-OLEDs though
this is confusing because one can operate a regular OLED in AC mode. To be as
general as possible, in this text we will use the latter: AC-OEL.

A basic schematic of the AC-OEL is shown in Figure 9.85a. The semiconduct-
ing polymer emitter (or small molecule organic emitter) is placed between two
insulating layers: above and below. The device is a capacitor of sorts with the
emitting material in the middle so that charge cannot be injected into it from the
electrodes. The device is driven by a time-dependent voltage or AC. Thus such
devices are high impedance with the power coupling capacitively to the emitter.
This makes driving field-activated devices more complicated than in the case of
OLEDs. Specifically, the power received by the device is the time average of the
Poynting vector, and this depends on the total capacitance of the system.

To understand how this “field activation” of the polymer creates light, consider
the above simple form (Figure 9.85a). When an AC field is placed across the emit-
ting layer, a polarization current will be established, Jp ∼ dE/dt. One can think
of this in terms of bound charge density (𝜎b ∼−n ⋅ P) at the interfaces in the
device. When the field becomes sufficiently strong, the surface dipoles of this
polarization current can dissociate (by a tunneling process) and lead to “free”
excitonic carriers. These carriers can recombine and decay in the usual fashion.
However, the field strength for this to occur is typically dangerously close to the
breakdown field of the materials. So, one might at first guess that such devices
always “teeter” on the brink of destruction. But, in all the references cited for this
section, the field-activated devices work quite well without breakdown! That is,
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Figure 9.85 The field-activated organic light-emitting device. (a) A simple diagrammatic
representation. (b) A research device typically used in literature.

at field densities lower than the breakdown fields of the insulators, they produce
a stable light of reasonable brightness. Why? The answer comes from a modifi-
cation of 𝜎b by interface states, together with defects within the polymer emitter.
Defects and interfaces introduce localized electronic states within the gap of the
emitter as we have already seen. Under the applied AC field, these become an
additional component of the polarization current but are dissociated at lower
fields (you should be able to determine why they “activate” at lower fields). These
are the origin of the carriers, and the more of them you have, the brighter the
device. Moreover, defects and interfaces provide for momentum conservation.
We show these states in the band diagram of Figure 9.86. So for a semiconducting
polymer placed between the two insulating layers and stimulated by a field den-
sity approaching 106 V/m, it will produce a low level, stable light at roughly the
bandgap of the polymer. It is important to note that light production is typically
asymmetric with respect to the input power cycle. This arises from the specific
positions of the defect states and interface states, as well as the polymer chosen.

In the schematic of Figure 9.85b, we have also included charge generation layers
(CGLs) as is typically seen in the literature [103]. These layers are used to enhance
light emission and generally are not necessary to achieve a low light level from
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Figure 9.86 The proposed injection process for AC-OELs. This device uses a double insulating
layer and an intrinsic semiconducting polymer. Such “non-doped” devices can produce up to
100 Cd/m2 in any color that can be provided by an OLED.

such a device. However, they increase the number of carriers available to tunnel
into the semiconductor by adding many more filled states at the interface.

Figure 9.86 shows a simple proposed band diagram for the “injection” process
in an AC-OEL. This device is “neat,” with no doping used to create “additional”
defect states (as in OLED). It is important here to state that the process of recom-
bination and light emission is similar to that of the OLED once the carriers are
created. So the use of Ir complex dyes is also possible and has been demonstrated
[104]. Curiously, however, whereas in the OLED the use of such dyes was strictly
limited to<1% of the composition due to quenching, no quenching is observed in
the AC-OEL until one reaches dye doping levels of around 30%! Several models
have been suggested for this difference [105].

Of course, the light output of a neat AC-OEL is too low to be of interest to
most applications. The enhancement of carrier concentration has been explored
in several ways. To do this a high density of bandgap states must be added with-
out dramatically decreasing carrier mobility. The approaches to this are varied.
By adding nanoparticles to the emitter such as Au or carbon nanotubes (in a
blend), one can concentrate the field locally while also adding a source of carriers
[106]. Alternatively, the simple addition of highly electronegative and electropos-
itive molecules blended into the emitter matrix can also introduce states. As in
the case of nanoparticles, care must be taken to balance the injection of posi-
tive and negative carriers. Finally, the emitter layer can be externally “doped” by
adding electronegative and electropositive layers such as shown in Figure 9.85
(CGL). Again, these must be chosen appropriately to lie within the bandgap of
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the polymer emitter and allow for facile charge injection into the emitting layer.
This approach is a little more complicated, and models based on Zener tunnel-
ing from the CGL have been proposed [107]. This makes a lot of sense because
injection can only occur under one polarization at a given interface – and the
opposite polarization at the other interface. So injection of electrons occurs at
the Zener breakdown field of the electronegative CGL/emitter junction and holes
at the Zener breakdown field of the electropositive CGL/emitter junction. This
happens at two different places in the power cycle.

The determination of efficacy, quantum efficiency, and other internal operating
parameters is a little harder for the AC-OEL than in the case of OLEDs. However,
brightness and external power efficiency is straightforward. The input power is
simply the voltage times the current times the phase angle between the two. Out-
put light is measured the same way as in OLEDs. To date AC-OELs have been
demonstrated with an external power efficiency of 29.3 LPW (110.7 Cd/A) oper-
ating at a brightness of 20 500 Cd/m2 and a white output [103]. This highlights
an unusual feature of the AC-OEL as compared with the OLED; the power effi-
ciencies are relatively high for high brightness. This is because the mechanism
for the creation of carriers is more efficient at higher field densities and higher
frequencies. However, loss in the dielectrics can limit the total power efficiency.

9.14.5 Organic Lasers and Organic Light-Emitting Transistors

The last class of light emitters we will discuss is that of organic lasers. As we
will see in this section, we have included light-emitting transistors in the discus-
sion because of their potential relevance to electrically stimulated organic lasers.
However, there are excellent and detailed reviews of this topic and so our discus-
sion is meant only as a brief introduction to concepts. For a deeper level review,
we refer the reader to the references [108].

We begin with the organic lasers that are already well known and used widely:
the optically pumped organic laser. Conceptually, the electroactive organic mate-
rial is used as a gain medium in which to establish a population inversion of
excited states. This must be placed into a resonator structure of some sort such as
between mirrors, a distributed Bragg reflector, or on a fiber to form whispering
gallery modes as shown in Figure 9.87 [109]. For such systems, an optical pump
system must be used to excite the electroactive organic.

The basic photophysics of molecular materials, or organic semiconductors to
be more precise, lends itself well to use as a laser medium. First of all, they tend
to be strongly absorbing (light). As we will see in the photovoltaics section below,
this means thin films (∼100 nm) can absorb 90% or more of the light at the absorp-
tion band maximum. Since stimulated emission is directly related to absorption,
this is a very important feature. The fluorescence spectra of organics can also be
quite broad and very tunable using chemistry. This too can be quite advantageous
when lasing at different lines is desired.

There are also drawbacks. For one, when used in a condensed (solid state)
form, molecular materials can interact strongly among themselves. That is, they
can form aggregates or excimers where the intermolecular interactions lead to
quenching. This reduction in photoluminescence efficiency (photoluminescence
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Figure 9.87 An “active” organic coating placed onto a fiber optic to form a whispering gallery
mode resonator system.

quantum yield, PLQY) is detrimental to lasing. So as long as laser dyes are used
in dilute solutions, where the active absorbing molecules are isolated from each
other, there is no problem. But once they are placed in a thin film, for instance,
strategies must be used to reduce intermolecular interactions. With small
molecule dyes, blending into a transparent, noninteracting host medium works
well. With polymers, typically large side groups must be added to isolate the
strands. So, as discussed in the very beginning of this text, for laser applications
one desires the “one-dimensional” behavior of the polymer to be preserved.

As is well known, lasing is based on the stimulated emission from an excited
state in the system. This excited state can be prepared by first pumping it by a
photon or exciting using injected charge. In organics, only the first way of prepar-
ing excited states has been demonstrated to yield lasing. The key element for
gain in a medium to be achieved is that the emitted photon from this stimu-
lated de-excitation has the same phase, frequency, and direction as the stimulat-
ing photon. Einstein showed that the cross sections for stimulated emission and
absorption between two states are identical. This means finally to get gain from a
medium, there needs to be more excited states for stimulated de-excitation than
there are absorbing states. This is also known as a “population inversion.” Given
the highly disordered state of polymers in a film, one might be tempted to think
it wouldn’t be possible to achieve these conditions in such a material. However,
not only can they be achieved, but also it turns out that such materials require
relatively low amounts of pumping energy to do so (a low threshold to lasing).

To understand why, we must remember the many closely spaced excited states
that are associated with organic molecules such as polymers. Remember, that
as a practical matter, a population inversion cannot be achieved in a two-state
system. However, with three or more states, it is possible to establish a population
inversion. In particular if we consider the case of a four-level system as shown on
Figure 9.86, absorption (or excitation) can occur between states A and B, whereas
stimulated de-excitation occurs between C and D. If the transitions from B to C
and D to A are properly balanced, then a population inversion can exist in the
C to D transition even when most of the molecules are in the ground state. This
means lasing can occur even for a relatively low rate of excitation (a low threshold,
Figure 9.88).
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Figure 9.88 The energy diagram of a
hypothetical four-level system built from the
singlet and vibronic energy levels of a molecule.

In molecular materials (organics), this is exactly the situation we are faced with.
If we associate the lines at A and C with the first excited singlet state of the
system, the sublevels above A and C can be associated with vibronic states of
the system. We have met vibronic states before, but we didn’t call them by this
name. They arise when a vibrational excitation of the molecule occurs that is
coupled with the electronic energy of the electrons in the molecule. The term
vibronic is a combination of the term vibrational and the term electronic. So if the
molecule has a vibrational state into which it can be excited, that consequently
raises the energy of the excited electronic state; the vibronic state will sit just
above the excited singlet state. The relaxation (or vibronic cooling) of this excited
vibrational state into the lowest vibrational state is rapid and also lowers the elec-
tronic state energy. De-excitation of the electron from the first excited singlet
state occurs into a vibronic state just above ground-state energy. From there, it
relaxes into the ground state. Typically such vibronic states are separated from
the excited state above and the ground state below by about 0.2 eV, well above
thermal energies. So there is little thermal excitation into the D state.

So the process is that a photon excites the organic from ground state into some
vibrational level of the first excited singlet state manifold (A to B). A rapid transi-
tion follows from this vibrational state to the lowest energy of this singlet mani-
fold (B to C). This is followed by a slower transition between the singlet excitation
and the ground-state vibrational states (C to D). Finally, the vibrational state at D
transits back to the ground state at A. Lasing can take place in the C to D tran-
sition, so population inversions are sensitive to the balance of transition times
between B to C and D to A. In this way organic semiconductors can give rise to a
four-level lasing system in which the threshold for lasing is low and the emission
wavelength of the laser is longer than the absorption wavelength of the excitation
photon.

There are, of course, many subtleties that we have not mentioned here, and
the reader will notice that we have combined our conversation to include ALL
organics: dyes, small molecules, polymers, etc. These general principles are the
basis for lasing from such system when photons are used to prepare the excited
states: “optical pumping.” Indeed, there really isn’t that much difference between
solution-based dye lasers that we are familiar with in the lab and optically pumped
solid-state organic lasers. An important aspect of the process is the molecule
acting “isolated.” For a more complete discussion of these processes, there are
a number of excellent reviews [108].
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However, this approach to lasing in solid-state organic systems is quite different
from the laser diode (based on a standard inorganic LED). Specifically, electrically
driven lasing in organics hasn’t been fully realized and developed. As we have
noted above, there have been great advances made in OLEDs. However, there
are challenges with turning an OLED into an organic laser. Specifically there are
three main areas in which researchers are focusing: current densities, losses due
to contacts, and losses due to polaron and triplet formation.

9.14.5.1 Current Densities
A typical LED laser operates at ∼103 A/cm2 and an OLED operates at a lowly
10−1–10−2 A/cm2. This is simply not enough pumping to build an effective pop-
ulation inversion. Can we increase the current density? The very low mobility of
organic conductors suggests this might be hard. There have been reports of very
high current densities in organics from pulsed injection [108]. This may be one
way around this limit.

9.14.5.2 Contacts
Another concern is the loss associated with contacts. The resonator structure
of a thin film organic device typically means the laser output is oriented along
the plane of the film. This not only gives a long interaction length with the gain
material but also means that there is an equally long interaction length with the
metal contact of the device. In each time the light interacts with the contact, some
is absorbed, leading to loss from the resonator. Such losses can add up to become
large and quench the lasing. So resonator design is strictly limited.

9.14.5.3 Polarons and Triplets
While the first two drawbacks may have some “work-arounds” the last one is far
more serious. Optical excitation generally yields singlet excitons. These excita-
tions, as we discussed above, are what are needed for lasing. Electrical injection
takes the form of polarons that then recombine into excitons that can be either
singlets or triplets. Triplets are a forbidden optical transition and so gain from
such excitations will be orders of magnitude smaller than from singlets. Both
polarons and triplets have associated absorptions that are quite strong. So fill-
ing the resonant cavity with these excitations introduces losses that increase as
one approaches lasing due to the increasing opacity as current density is raised.
For a material with mobility of 10−4 cm2/V s, Tessler [110] estimates there are
as many as 1000× more polarons than singlets and of course 3× the number of
triplets. Importantly, the absorption of these excitations in most organic systems
is rather broad and therefore overlaps with the lasing line.

All three of these issues are related directly or indirectly to the issue of low
mobilities usually found in organic systems. So there is always a possibility of
discovering new organic laser materials, but as we have already seen, these would
have some fundamental differences to what we know of organics. However, there
are other approaches that have been suggested.

One such “alternate route” is that of the “organic light-emitting transistor”
(OLET) shown in Figure 9.89. Such devices have been touted for their potential
uses in a wide variety of applications including electrically driven organic
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Figure 9.89 The structure of an organic light-emitting transistor is shown. These have been
proposed as a potential route to electrically driven organic lasers.

lasers [111]. The OLET is a light-emitting form of transistor wherein holes are
injected from the source electrode and electrons from the drain electrode, into
a semiconducting polymer or organic material. A back gate electrode with a
dielectric insulating layer separating it from the semiconducting channel above
is added, as shown in the diagram. This allows one to switch the light emission
on and off, without additional circuitry as required with the OLED, yielding
a general utility in pixelated display technologies. However, the gate voltage
also allows for the recombination region with its polarons and triplet states
to be confined to a region near the dielectric. This means the light emission
can be used to stimulate a population inversion elsewhere within the volume
of the conduction channel. Schols et al. have hypothesized that this feature
might be used in electrically driven lasers [112]. Technically, the volume that is
luminescing due to recombination of injected charge (and where the strongly
absorbing triplets and polarons are located) would not be lasing.

9.14.6 Organic Solar Cells

Related to the organic light emitting diode is the organic photovoltaic (OPV) cell
and much of the discussion above, also applies to the construction of such cells.
Highly doped conjugated polymers are metals, but undoped or lightly doped,
they are semiconductors as pointed out above. Generally, in crystalline system
like silicon, a p–n junction is formed between two thin layers of doped mate-
rial. Light that enters creates an electron–hole pair that migrates randomly in
the film until they come across the p–n junction. At this point (at the p–n inter-
face), the electron–hole pair is separated, and we retrieve this as usable current.
It is not easy to make p–n junctions in conjugated polymers, however, because
the dopants, being interstitial, are very mobile. So they migrate and compensate.
But Schottky barriers can be formed, just by evaporating a thin layer of a metal
with proper work function onto the polymer. A Schottky barrier on polyacetylene
or another conjugated polymer acts as a crude, and rather inefficient, solar cell.
Such a device is shown schematically in Figure 9.90. A Schottky barrier works as
a solar cell because at the polymer–metal interface there is a “built-in” electrical
field created by electron exchange between metal and polymer. If the incoming
light generates electron–hole pairs (an exciton), these carriers can be separated
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Figure 9.90 Schematic view of a polyacetylene – metal solar cell.

in the field if they make it to a separation junction before they recombine (giving
off light). When the electrodes are connected to an external load the photocur-
rent can flow, and the field will be maintained. Power conversion efficiencies of
∼1% (depending on design) can be achieved using such an approach.

There are challenges to this approach however. It is well known, for instance,
that organics can provide exceptionally good chromophores. Indeed, the effi-
ciency of a polymer to convert light into an electron–hole pair [113] is excellent,
exceeding all but the best-known solid-state crystalline systems. However, it is
usually observed that it is nearly impossible to remove substantial amounts of
these excitations from the polymer as current, meaning that organics couple well
to photons but make poor photovoltaic conversion materials. But why is this so?
The difficulty comes in fundamental material properties that derive both from
the polymer electronics and its structure in solid form. Migration lengths for the
donor–acceptor excitations [114] are much shorter than the absorption lengths
required to create the excitations. Thus the films thickness must be >100 nm to
create an excitation, but the distance to an effective separation barrier must be
<10 nm to for the electrons and holes to be removed as useful current. Otherwise
they will recombine to give luminescence. Some creative ways have been devised
to get around this difficulty, but to see how they work, we first need to go a little
deeper into the terminology and metrics used in the field.

In the field of OPV devices, there are several basic terms that recur. The first is
the IQE of the device. This is the number of electron–hole pairs actually separated
per incoming photon, and it is usually presented as a function of wavelength.
Second, and most often cited, is the external efficiency or the “power conversion
efficiency,” 𝜂e,

𝜂e = Voc[V] × Isc(A∕cm2) FF∕Pin(W∕cm2) (9.30)

where, V oc, Isc, FF, and Pin are the open circuit voltage, the short circuit current,
the filling factor (FF), and the incident power, respectively. The filling factor is
determined by calculating the maximum power rectangular area under the I/V
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Figure 9.91 An I/V curve of a thin film photovoltaic cell under illuminated and dark
conditions. The maximum power rectangle is drawn in as described in the text.

curve. Simply, it is given by

FF = Vp × Ip∕Voc × Isc (9.31)

where V p and Ip are the intersections of the I/V curve with the maximum power
rectangle. You can think of the filling factor as a quality factor of how well the
device can drive a load.

Figure 9.91 shows a typical I/V curve of an illuminated and dark organic pho-
tocell. To get such a curve, you ramp the voltage placed on the device and collect
the current under dark and illuminated conditions. The illuminated I/V will shift
as seen above. The voltage the device would produce under infinite load (open
circuit) is shown as V oc. The current the device would produce when illuminated
with no resistance in the load is shown as Isc (for short circuit). But when the illu-
minated device is connected to a finite load, it produces less power than V oc × Isc
(Pmax). This is because the device is not an ideal current or voltage source. To
compute how much power the device will produce under load, we first draw the
rectangle against the 0 V line such that it intersects with the illumination curve as
shown. There are an infinite number of such rectangles possible, and we choose
the one with a maximum area possible, typically determined computationally.
This is referred to as the “maximum power rectangle.” The power that the device
will produce is actually V max × Imax as shown. However, this is generally given as
the ratio of the areas of the maximum power rectangle to that of the “ideal case,”
which is known as the filling factor (FF) times Pmax. In the case shown we have
0.2 V× 8.0× 10−4 A= 1.6× 10−5 W. This gives FF= 0.23 when divided into the V oc
and Isc, roughly. The filling factor is typically used as an indication of the quality
of the photovoltaic and can range from 0.9’s (for Si) to 0.7’s (for many organics).

Importantly, our example here happens to be an organic thin film device. It
is illuminated with a solar standard of 1.5 air masses (am 1.5 g). Such a standard
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simulates the average power of the solar spectrum at each wavelength as it occurs
at the surface of the Earth (traveling through 1.5 air masses of our atmosphere).
Such a path for the light to reach the Earth’s surface corresponds roughly to a
position on the globe equivalent to Michigan in the United States. The 1.5 irra-
diance curve used in this test corresponds to the ASTM G173 testing standard
agreed to by international commissions on testing. This particular example has
an external power efficiency of about 2.3%.

The offset (or open circuit voltage) in the system is roughly the difference
in work functions of the contact and thin active film. The origin of the V oc
has been studied extensively by Friend and cowokers [115], among others. In
such I/V studies, comparisons can be made between devices of the structure,
ITO/PPV/Mg and ITO/PPV/Ca, for instance. The offset voltages in the I/V
curve, that is, the open circuit voltages, were 1.2 and 1.7 V, respectively, for these
two examples. These numbers are roughly the same as the difference in work
function between Mg and ITO and Ca and ITO. However, in an ITO/PPV/Al
device, one also obtains 1.2 V for the open circuit voltage. Oddly, this is signifi-
cantly higher than the work function difference between ITO and Al. In this case
a sizable Schottky barrier has occurred, effectively raising the injection energy
cost. It is surprising that this is not so strongly seen in the case of the alkali
metals for this system.

As mentioned above, an essential difficulty, and thus the focus of intense
research, is the mismatch of length scales in these systems generally. The most
successful approach to addressing this shortcoming is the use of a “bulk hetero-
junction.” A BHJ device is formed with the introduction of a highly conducting
“nanophase” such as fullerenes [116]. In this scheme, fullerene molecules (C60
or C70) or conjugates such as PCBM are blended into the active absorber to aid
in the separation of charge. The idea is to form a percolating network of the
highly conductive material out of the layer. By using fullerene, the electrons are
transferred to the nanophase and are transported out along its pathways. The
holes exit through the polymer. This approach has been tried with conducting
polymer phases as well as carbon nanotubes [117], but none have worked as well
as fullerenes because of their strong acceptor quality.

The key to getting this interpenetrating network approach to work well is the
morphology of the nanophase. The fullerene phase must be spread throughout
the host without aggregation but with enough interconnectivity to allow for elec-
tron transport. Moreover, it must not disturb too much the π stacking of the
polymer host phase or the mobility of the holes will suffer. While there have
been numerous advances in the polymers used since OPVs were first introduced,
the control over morphology for each system remains a point of “art.” Specifi-
cally, once a new candidate polymer is developed, a significant amount of time
and effort must go into creating the right morphology for it to work optimally.
Multiple solvents, high-temperature annealing, and additional side groups of the
polymer are all employed to optimize the polymer for use with an acceptor phase.

There are today quite literally hundreds of polymers under study for use in
OPVs. The power conversion efficiencies have now been raised to over 11% and
are still climbing. This is approaching the performance of amorphous Si cells. So
will OPVs ever become a viable competitor? A solar cell made of single-crystal
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silicon has to run for several years until it has generated the amount of energy
that has been used for the production of the cell. Counting the cost of the cell
and its support apparatus, power generated by Si is just at $1 per Watt. There
are some cells that are cheaper than this! Since conjugated polymers are syn-
thesized by room temperature catalytic processes, they are energetically cheap
to manufacture. But this is not the only economically relevant figure. Land costs
and maintenance costs are equally important. Lifetime and replacement costs are
also important. So even with higher efficiencies being achieved and the need for
flexible and mobile power sources growing, it is becoming clear that organic solar
cells will have to provide service lifetimes approaching that of Si and take up less
space (or be integrated into building materials) to be able to compete effectively.
This is simply a restatement of an old truth: “power production tends toward its
most dense form in the marketplace.”

9.14.7 Organic Field-Effect Transistors

In each of the examples above, we have seen how the disordered nature, of
our one-dimensional systems, has modified standard notions about electronic
devices. This applies to transistors made from organic semiconducting systems
as well. More specifically, we might well imagine that the field-dependent mobil-
ity would express itself rather strongly in an all organic field-effect transistor
(OFET). We met OLETs above. OFETs [118] have historically been prepared as a
tool for investigating material properties of the organic films, but with improving
material quality they are quickly approaching practical utility. Prepared in the
form of thin films, these semiconductors are ideal for the creation of flexible,
inexpensive field-effect transistors.

OFETs fall generally into two categories: small molecule and polymer. In both
cases aspects of dimensionality are important. For small molecules laid down in
a thin film, the molecules arrange themselves in such a way as to provide con-
ducting one- or two-dimensional pathways through the film (depending on the
molecule). We met such arrangements in Chapter 2. Polymers inherently con-
duct along the strand or by hopping from strand to strand. So both approaches
share common themes. Figure 9.92 shows an all-polymer field-effect transistor
[45]. It consists of a polymer film between a source and a drain contact and a gate
on the backside. To avoid direct contact from the source or drain and the gate,
the gate is protected by a thin insulating layer of silicon dioxide.

As the back gate of the device is biased, the total amount of charge allowed
through the channel is changed. An example of drain current vs. drain voltage
characteristics is shown in Figure 9.93 [118]. The characteristics demonstrate that
all-polymer field-effect transistors “work.” More important is presently the use
of such devices as experimental tools, for example, to determine the mobility of
charge carriers in thin organic layers.

The fundamental operation of the device follows in the same manner as the
crystalline system [119]. As mentioned above, however, the mobility of charge
is dominated by its hopping nature. Further, there is a relatively low number of
charge carriers, and it is therefore rather difficult to build a significant depletion
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Figure 9.92 All-polymer
field-effect transistor. Source: After
Burroughes et al. [118].
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Figure 9.93 Drain current vs. drain voltage characteristics of an all-organic (sexithiophene)
field-effect transistor. Source: After Garnier et al. [118].

region. These factors introduce limitations into the current applicability of the
OFET structures. However, advances are being made rapidly.

9.14.8 Organic Thermoelectrics

Organics can provide a reasonable conductivity of electrical charge, but we
would expect them to be poor thermal conductors. This is because generally
in solid-state systems, the electronic contributions to thermal conduction are
not as large as the phonon contribution and polymers have small phonon
contributions. And this is indeed the case. Typically thermal conductivities in
even highly electrically conducting polymers are vanishingly small.

This is true even in polymers filled with nanotubes. Nanotubes can have
extremely high thermal conductivity on their own. But when put into a polymer
matrix, the phonon energy must hop from nanotube to nanotube, introducing
scattering into the flow of heat. So for such composites where electrical con-
ductivities can approach 105 S/cm, thermal conductivities are still <1 W/m2 K.
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Interestingly, this “scattering” is not very sensitive to nanotube loading within
the matrix (above a certain minimum). For loadings around 50% by weight up to
100% nanotubes (a mat), the thermal conductivity of the matrix doesn’t change
very much [120].

Materials with high electrical conductivity and low thermal conductivity are
typically excellent candidates for thermoelectrics. The Seebeck effect, one part of
the thermoelectric effect in materials, is a thermodynamically reversible process
that turns a temperature gradient into a voltage. A simple picture of this process
might look like Figure 9.94.

In this simple model the carriers (electrons or holes depending on if the mate-
rial is n type or p type) act as a gas of particles in the “box” of the material sample.
When one end is heated relative to the other, the velocities of these particles are
increased, allowing the carriers from the hot side to diffuse to the cold side more
rapidly than vice versa. This results in a buildup of charge on one side of the sam-
ple and a thermovoltage. The current–voltage relation is tied together through
this temperature gradient as

J = −𝜎𝛼ΔT (9.32)

where J is the current density, 𝜎 is the conductivity, and 𝛼 is the Seebeck coef-
ficient (otherwise known as the thermopower). Typical values for 𝛼 are −100 to
+1000 μV/K, and these are an intrinsic property of the material. It is relatively
straightforward to show that the power that can be delivered by a thermoelectric
material is given as

P ∼ ΔT2
𝛼

2ATE∕𝜌L (9.33)

where 𝜌, resistivity; L, length of material; and ATE, cross-sectional area of the
material. Furthermore the maximum efficiency for converting heat power into
electrical power by a thermoelectric material is limited by the Carnot efficiency.
If we divide power out by power in, we can derive an expression for the effi-
ciency based on a combination of material properties that we combine into a
single expression ZT :

ZT = 𝛼2T∕𝜌K (9.34)
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Table 9.1 Values comparing several different types of thermoelectric materials (BiTe, PEDOT,
CNT composites).

Bi2Te3
[121]

PEDOT
[122]

CNT composite
[123]

𝛼 (μV/K) 150–200 100–800 10–60
𝜎 (S/m) 105 104–10−2 106–10−1

𝜅 (W/m/K) 3 0.3 0.1–0.3
𝛼

2
𝜎 (μW/m/K) 7800 100 10–100

ZT 1 0.2 0.02–0.1

where T is the temperature of the heat bath and K is the thermal conductivity. Z is
the so-called figure of merit. But often Z is multiplied with T and in compilations
like Table 9.1 the “ZT value” is used.

Of course this extremely simple picture overlooks many nuances, but clearly
if the phonons generated in the hot part of the volume are also transported effi-
ciently to the cold side,ΔT will be hard to maintain. Commercially the inorganic
Bi2Te3 is among the best performers, but there are many inorganic material sys-
tems under study, including skutterudites and clathrates [124]. These materials
exhibit strong phonon scattering while still transporting current. Of course as
pointed out above, polymers can expect the same properties. While the inorganic
systems such as Bi2Te3 above have ZT ’s around 1, highly conducting polymer sys-
tems such as PEDOT are quickly catching up (ZT ∼ 0.2). A few literature values
are shown in Table 9.1.

As an example of a thermoelectric power generator, Figure 9.95 shows the pho-
tograph of a “power felt.” This is a stack of polymer films loaded with carbon
nanotubes, electrically wired in series, and thermally in parallel. At a temperature
difference of 100 ∘C (one end in ice water, the other in boiling water), a voltage of
50 mV can be measured [120].

9.15 Summary

At an MRS meeting back in the 1980s or so, it was once bragged that “given time,
Si could match the properties of any of its technology rivals: GaAs, GaN, InP,
etc.”7 This does seem to be coming true with the development of ultrapure Si,
porous Si, and so on. From this same perspective, this chapter has introduced
another “supermaterial” in electronics: conjugated polymers (plastics). And with
the rapid progress made in the field, it is tempting to say that, given time, we will
be able to build any type of device from polymers!

But how can this be? How can a low-dimensional system with such strange
and wonderful coupling to its carriers become technologically relevant? As we
saw, polymers can be thought of as an archetype for electron–phonon coupling

7 He was obviously in the wrong session!
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Figure 9.95 Power felt, stack of nanocomposite films containing carbon nanotube networks,
delivering a thermopower of 90 mV for a temperature difference of 100 ∘C [120].

with the coupled states referred to as solitons. Such solitons have a number of
properties not available to pure charges moving in a solid. These include differ-
ent spin projections, spin–charge separation, and more. However, they can be
seen as “just another charged particle” in the system like electrons or holes. To
this end, we demonstrate that electronics and photonics based upon these strange
conductors are, in reality, extremely similar to standard semiconductor electron-
ics with the exception that they carry with them the mechanical properties of a
plastic. In some cases, however, the additional properties of the carriers can yield
surprisingly better devices than the crystalline counterparts.

Exploring Concepts

1 Derivations: Work through the derivation of the Egap and the solution to the
master equation above. Show explicitly where the linear 𝛿 term comes in and
over what range.

2 The Peierls equation: Research physical models for the A term in the Peierls
equation. How does it arise and what are reasonable values for it? For more
reading, try Ref. [125].

3 Spatial extent of domain walls: What would limit the spatial extent of the
domain wall in a conjugated polymer?

4 Position of polaronic states: Using the molecular orbital approach, explain
why polaronic states will occur in the bandgap?
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5 VRH or FIT : We have confined our discussion to polyacetylene on purpose.
It must be obvious by now that many other systems exist to which VRH or
FIT models can be applied. Consider bare mats of nanotubes. The morphol-
ogy seems to be quite similar to that of the polymer discussed here.

(a) Look at the temperature-dependent conductivity data formats of multi-
walled carbon nanotubes (in literature). Determine which model is most
appropriate?

(b) Now compare this to mats of single-walled carbon nanotubes, which are
mixtures of semiconductor and metallic nanotubes. Is there a change in
your answer? What effect does doping have?

6 Nanotube mats: What is the highest conductivity achieved in nanotube
mats?

7 Two-state systems: Why does a two-state system not allow for a population
inversion?

8 Optically vs. electrically pumped lasers: Using∼1 μJ/cm2 as the threshold for
optical pump density and assuming 25% of the injected excitations are the
desired singlets with a lifetime of 5 ns, can you determine the current den-
sity necessary to achieve lasing for an organic electrically pumped system?
(Compute the photon density first and work from there.)

9 Singlets: Why is the relatively short (∼ns) excited state lifetime of singlets a
problem for the current densities we are able to achieve in organics?

10 Vibronics: How fast are vibronic transitions?

11 Organic resonators: Investigate several resonator designs for organics and
draw them out. Explain how they work.

12 Gain in triplets: Why do the triplet transition selection rules lead to lower
gain from these excitations?

13 Thermoelectric efficiencies: Using ZT , come up with an expression for the
maximum efficiency of a thermoelectric material. The expression should
involve only intrinsic variables.

14 Energy transfer: So how does an exciton in a host polymer transfer its energy
to a guest dye molecule? There are three ways: radiative energy transfer,
Förster transfer, and Dexter transfer.
Radiative transfer occurs through the radiative deactivation of the donor
molecule and subsequent reabsorption of the energy by the guest acceptor.
The probability of the process goes as

P ∼ [A]xJ
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where [A] is the concentration of the acceptor molecules, x is the specimen
thickness, and J is the spectral overlap integral.
Förster transfer is very fast <10−9 s resonant dipole–dipole coupling.
Because it is dipole mediated, it can be relatively long range ∼10 nm, and
resonant means the transitions must be allowed by selection rules. So
typically this applies to singlet–singlet transfer. The transfer rate constant
from donor to acceptor is given as

KFT(r) ∼ (1∕𝜏D)(r0∕r)6

where r0 is the Förster radius given by

r0 ∼
[K2JQ0

n4

]1∕6

K is an orientation factor between the dipoles, J is the spectral overlap inte-
gral, n is the refractive index, Q0 is the quantum efficiency without energy
transfer, 𝜏D above is the radiative lifetime of the donor, and r is the distance
between the donor (D) and acceptor (A). Again, only “dipole-allowed tran-
sitions” are possible.
Dexter transfer requires the overlap of the wavefunctions of the donor and
acceptor and is the dominant energy exchange mechanism for triplet–triplet
exchange. It is typically associated with the exchange of an electron. Only
singlet–singlet and triplet–triplet exchange is allowed by the mechanism
and then only within an interaction radius of ∼1 nm. The transfer rate con-
stant is given as

KDT ∼ ℏP2Je−2r∕L

where J is the overlap integral, P and L are constants, and r is the distance
between donor and acceptor. In Dexter transfer spin is conserved.
It is useful for the reader to review these mechanisms in the context of
host–guest interactions and derive the formulae given above. Notice the
differences in interaction length scales will place specific limits on how
much dye can be used to achieve the maximum brightness in an OLED
device.
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Correlation and Coupling

In conducting polymers, we saw how the coupling between a distortion on a
one-dimensional (1D) lattice and a charge associated with the bonds at that
distortion can move together and act as a single composite particle. However,
this particle, because of its partner distortion, can take on properties that a bare
charge could not. These phenomena are, quite generally, the nature of correlation
and coupling in solid-state systems. Now, the reader will notice that we have
used these two words together, but they really describe slightly different aspects
of an interaction. Electrons that act in concert with each other are said to be
correlated. However the exact mechanism of coupling their behaviors together
may or may not be known completely. So, as you can see, the use of these terms
can be a little nuanced.

In this chapter we go a little further into the ways in which a material’s electronic
and/or vibrational properties are linked. Our approach here is surely quite heuris-
tic: to examine a property of a system and find a physical picture that explains how
this property comes about. This traditional approach gives a remarkably good
“seat-of-the-pants”1 understanding of correlation in materials. But it is a hodge-
podge. The properties we are looking at are all a natural result of the many-particle
nature of the complete Hamiltonian for the system and its many-particle wave-
function. Whatever we find in our “seat-of-the-pants tour” should converge to a
description given by the full many-particle wavefunction description, if we were
only clever enough to solve for it.

10.1 The Metal-to-Insulator Transition
and the Mott Insulator

It should be obvious that electrons moving about in a solid don’t pass through
each other, and they don’t bounce about like small hard-core marbles. They
do interact through long-range Coulomb forces, however, sometimes rather

1 A great old phrase borrowed from a dear friend, Worth Seagondollar, who is no longer with us. It
was his contention that if you couldn’t explain things on the back of a napkin or an envelope, then
you simply couldn’t explain it. Worth was a professor of physics at NCSU, having previously worked
on the Manhattan Project. I, [Carroll] have always been confronted by the simple, brutal reality of
this statement.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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strongly. These situations can be termed systems with strong electron–electron
correlation. The classic example of this might be the case of materials that should
be metals but are in fact insulators.

As we have seen in our discussions of band structure, electrons that move
through the solid originate with the atoms, which become ionized in a way. In the
case of transition metal monoxides (such as CoO, NiO, and MnO), the conduc-
tion band of the solid is frequently “composed of” d orbitals2 that do not extend
far from the lattice site. Thus, there should be a significant level of localization
to these electrons – you can think of the modulus of the Bloch wave as having a
large electron density near the atomic sites generally. If one calculates the band
structure of a material like NiO or similar, we find that the Fermi level falls in a
partially filled band, so there should be no trouble with calling this a metal. Per-
haps the bands are rather flat, and there is this degree of “localization,” but that
just leads to a large m* and shouldn’t change the conduction properties otherwise.
Unfortunately stoichiometric NiO is an insulator. So what went wrong?

In 1949 Mott introduced a model for interactions that might solve this puzzle
[1]. Remember that if there are no interactions between the electrons at all, then
the relevant length scale between ionic lattice positions is simply the lattice con-
stant/s “dij.” This length scale will normalize everything in the physics to the dis-
tances it takes the electron to travel from lattice site to lattice site under whatever
transport model we might choose (except Drude of course, which doesn’t recog-
nize the lattice). However, an electron localized even momentarily at a specific
lattice site does repel the other electrons at other lattice sites unless the Coulomb
interaction is effectively screened by the polarization of a surrounding environ-
ment. Thus, there is a second length scale introduced into the problem that has
to do with the extent of this screened Coulomb potential. You might allow, as a
guess, this to be the Bohr radius: “ao.” In such cases the “free electrons” tend to
delocalize over the lattice to lower their state energy, but the electron–electron
repulsive interactions work against this delocalization, forcing localization on lat-
tice sites. This reduces the density of states (DOS) at the Fermi level and a Mott
gap opens up. This is the essence of the Mott argument:

dij ≫ a0 is an insulator (10.1a)
dij ≪ a0 is a metal (10.1b)

There should actually be some critical value of dij at which a metal-to-insulator
transition (MIT) occurs. To see this a bit more clearly, we follow Mott and intro-
duce a pseudo-order parameter:

𝜀 = I − E (10.2)

where I is the ionization energy of the solid and E is the electron affinity. So if
there are no electron–electron interactions in the solid, I = E and 𝜀= 0. However,
if there are such interactions, clearly I >E and 𝜀> 0. Note as d decreases, dij → o,
𝜀 increases, and the system will undergo a transition from metallic to insulating.
We might think this could happen in two ways: path a (continuous) and path b
(discontinuous) as seen in Figure 10.1.

2 In the sense of LCAO.
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a

b

1/dij

ε

Figure 10.1 Two possible
paths that a system can
proceed toward a
metal-to-insulator transition
as the lattice constant is
changed. Path a represents a
continuous phase transition;
however the discontinuous
path b represents a first-order
phase transition in the
system. Mott argued for the
second scenario.

So our picture is one in which the electrons are
held in their places so to speak. This means there is
an energy gap from the “frozen state” to a state in
which transport can take place. The DOS splits into
two bands, known as a lower Hubbard band and an
upper Hubbard band. The energy gap that occurs is
given by the deceptively simple term

EMott gap ∼ U − 2zt (10.3)

where U is the Coulomb energy, z is the number
of nearest neighbor atoms, and t is the so-called
transfer integral usually computed using tight bind-
ing models of band structure. The gap occurs when
U is large enough.

So, we have used the terms Hubbard this and
Hubbard that. This refers to the mathematical
model that Hubbard came up with to describe
Mott’s idea: the Hubbard model. This model is seen
as a static lattice occupied by electrons with spin-up
or spin-down hopping between sites. Figure 10.2 shows this schematically. A site
can be occupied by zero, one, or two electrons – but, in the case of two electrons,
the spins must be antiparallel to satisfy Pauli. In a configuration that has two
antiparallel spin electrons, there is an increased energy due to the Coulomb
repulsion. This additional energy is given as U (the same U as above). In the
model, the electrons are free to hop from site to site, and when they do their
spin projection doesn’t change. The amplitude for this hopping comes from
the overlap integral between the two wavefunctions, and this is denoted as −t.
Finally, a chemical potential is usually added to the model so that the energy
increases as the number of electrons in the configuration increases.

The full formulation of this problem is really better done using second quanti-
zation, with creation and annihilation operators as opposed to analytical wave-
functions. While this is not particularly difficult, it does sort of miss the point of
our present discussion: “seat-of-the-pants pictures of mechanisms.”3 So, we will
set the problem here, but to see it in mathematical detail, you must go to one of
the many specialized texts on the topic. Here we take a moment to say that this
model has been applied now to a wide range of problems, not just Mott insula-
tors and their analogues. The impact of Hubbard-like models on optical lattices
to gauge theories should not be underestimated. This apparently again points to a

3 At this point in the text, many problems are approached with advanced and nuanced
mathematical techniques that can sometimes obscure the underlying physics we are discussing. This
is an issue of philosophical perspective. We, the authors, wish to provide a background that allows
the reader to picture how some process is taking place. The point of this is to gain the kind of
understanding that allows for more detailed discussions with specialists in the subtopics or to
launch ones own enterprise in learning about those subtopics. So we see the mathematical apparatus
as artifice and the statement of explanation about the physics as the underlying truth approaching
some reality of the universe. This perspective is not universally held: but hey, “our book, our rules…”
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t
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U
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Figure 10.2 A picture of the Hubbard model. The lattice is shown as the empty circles, and the
colored circles are the occupying electron population. Notice that when two electrons end up
on a site, the configuration energy goes up by U. Of course, this is the 2D analogue of the idea,
and one can easily imagine how this could be thought of in 3D or in 1D. In the example shown
three sites are doubly occupied, two sites have an electron hopping onto an unfilled site to
singly occupy it, and a single site has an electron hopping onto a sit that is already occupied
by an electron, thereby making it become doubly occupied as well. One might also image a
large chemical potential in this system since there are nearly enough electrons to occupy all
sites. For fewer electrons, such a chemical potential would decrease as would the probability
of double occupancy.

universality in the descriptive language of physics with many of our mathematical
models being appropriate for more than one problem.

10.1.1 The Hamiltonian

For our discussion of Mott insulators, we start with a Hamiltonian of the system:
the Hubbard Hamiltonian (HH). Of course we wish to avoid the full many-particle
description, since it is generally not easily solved, and we make approximations
that will describe the essence of our hopping picture (Figure 10.2). A reasonable
first guess, Hubbard suggested, might look something like this:

H = HKE(−t) +HInt(U) −H(𝜇) (10.4)

The first term is a “kinetic energy,” and its sum preserves spin projection (it
does not allow for the same spin on a single site). This is obviously a function of
the hopping integral (−t). In other words all KE, like a good beer, is wrapped up
in the “hops.” The second term is the “potential energy” of electrostatic repulsion.
This term is a sum that goes through every lattice site and adds the constant U
for every site that has two electrons, arranged with antiparallel spins of course.
The last term is the chemical potential and accounts for the filling of the bands
with electrons. The case where there is one electron per site is the “half-filling”
case, because it has half the total number of electrons per site as the maximum
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case, which would be two electrons per site. In fact, this is the most interesting
case, and many Hubbard model studies begin here since it is the case that tends
to show the interesting physics such as the Mott gap.

10.1.2 The Lattice and Antiferromagnetic Ordering

Because the t integral is sensitive to spin and the U is added to each site with
more than one electron, the Hubbard model allows for the system to relax into
spin-ordered phases as shown in Figure 10.3. The bipartite lattice configuration
can be divided into two sublattices: A and B, where the nearest neighbor of each
A lattice site is a B lattice site and vice versa. Thus, bipartite lattices can be given
to antiferromagnetic ordering as seen in Figure 10.3. We note that square and
hexagonal lattices are both of the bipartite type, whereas the triangular lattice is
not. Physically there is just no way the triangular lattice sites can be arranged such
that sites of different spins are always nearest neighbors. In the triangular lattice
there will always be two sites with similar spin next to each other. Thus we refer
to antiferromagnetic ordering on the triangular lattice as frustrated.

10.1.3 Other Considerations: The Particle-Hole Symmetry (PHS)

This HH has an interesting particle-hole symmetry (PHS) in bipartite lattices.
Notice that the overlap integral for an electron hopping in one direction must
be equivalent to a hole hopping in the opposite direction. Thus, we must con-
clude that this part of the Hamiltonian makes no distinction. The PHS allows us
to relate properties of the HH to different values of parameters in the system. It
also forms the basis of constructing mappings between attractive and repulsive
HHs. You will find it used frequently in quantum Monte Carlo simulations.

This (PHS) symmetry has a rather important impact on the behavior of bipar-
tite systems. It appears when we consider the exchange of electrons for holes in

Figure 10.3 The bipartite
ordered lattice of the half-filled
Hubbard model. The spin
projections of the electrons are
shown in the upper left, and each
of the sites has an electron.

The lattice and antiferromagnetic ordering
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the Hubbard model. Formally, this is done through a particle-hole transforma-
tion (PHT) in which creation and annihilation operators are switched. However,
it is clear that, for the bipartite lattice, the effect of switching electrons and holes
is twofold. First, lattice sites of sublattice A are transformed to sublattice B. This
is because t relates the two nearest neighbor sites, and so all hopping transitions
take place between these two sublattices. If we run this backward, a hole goes
from B to A as an electron goes from A to B. Secondly, eigenstate occupation
numbers are switched: n = 1 occupied states become unoccupied states, n = 0.
Thus, in our HH, the kinetic energy term must look exactly the same under an
exchange of electrons to holes. If we further take the step to shift the chemical
potential and internal energy by a trivial constant, we can redefine U such that
+1/2U and −1/2U is the energy associated with the double occupancy and single
occupancy of a given sublattice site. This leaves the HH for holes equivalent to
that of the electrons except for the chemical potential.

So, under a PHT, the density operator 𝜌 transforms to 1− 𝜌, and the HH trans-
forms to the same HH with a negative sign in front of the 𝜇 term. As a result
at 𝜇 = 0 we have half-filling in the system, and 𝜌 = 1 for any value of t, T , and
U . This implies that the phase diagram for the bipartite system is symmetric
around half-filling. This fact can be useful since the square lattice HH is some-
times applied to cuprate superconductors (the so-called type II superconductors).
Often in such models a t′ integral is included that connects sites across the diago-
nal of the square lattice. This means that sits on the same sublattice are connected,
thereby breaking the PHS. So, the properties of the HH are not the same for
𝜇 < 0 and 𝜇 > 0. This, in fact, correctly captures the observation that n-doped
and p-doped cuprates have strikingly different properties.

10.1.4 The Hubbard Model in Lower Dimensions

Despite the relative simplicity of the Hubbard model, physicists have not been
able to fully (exactly) solve for its properties in the thermodynamic limit, for sys-
tems of two or three dimensions. Here, the thermodynamic limit means systems
with large numbers of sites and electrons. Indeed, this remains a kind of “holy
grail” for condensed matter physicists in general. Of course, this doesn’t mean
we can’t solve the easier problems, and they can be quite instructive. To see this
let’s look at the two-site Hubbard problem.

The two-site Hubbard model is the simplest nontrivial example of the proper-
ties of the Hubbard. It is useful for understanding the binding of some binary
molecules and, through extension, some low-dimensional structures. In our case
(the two-site model), there are 16 possible configurations of electrons on two
sites. They are 1 with no electrons, 4 with one electron (an up or down electron
on each of the two sites), 6 with two electrons (1 with two up electrons on dif-
ferent sites, 1 with two down electrons, and 4 with an up electron and a down
electron), 4 with three electrons, and 1 with four electrons. Notice that we have
included possibilities with more than two electrons on a site since there are four
available, two from each of the sites.

Electrons are conserved of course, and they don’t change their spin when they
hop in our model. So we can classify configurations into different groupings
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wherein each element of a group is somehow equivalent. We will solve for the
relative energy states of each separately. Now to start, the configuration with no
electrons is not like any other configuration: it has an energy of zero. The two
configurations with an up electron are equivalent to each other, as are the two
configurations with a single down electron.

We next have to solve the Schrödinger equation for the single up electron (and
single down electron) case. We’ll use a notation for the wavefunction that looks
like this:

|ψ⟩ = a|↑, 0⟩ + b|0, ↑⟩ (10.5)

where a and b are complex numbers that satisfy a normalization condition that
the sum of their squares equals one, | ↑, 0⟩ is the configuration with the up elec-
tron on the first site and with the second site open, and |0, ↑⟩ is the other config-
uration with the up electron on the second site.

The Schrödinger equation, H|𝜓⟩ = E|𝜓⟩, uses our Hubbard Hamiltonian H ,
and E are the energies of the stationary states. In this case, H is a two-by-two
matrix, and we need to solve the eigenvalue equation

[
0 −t
−t 0

] [
a
b

]
= E

[
a
b

]
(10.6)

and the solutions look like

a = b = 1
√

2 (10.7)

for E = −t and

a = 1∕
√

2; b = −1∕
√

2 (10.8)

for E = t.
We already have an interesting finding: in the delocalized solutions, the spin is

not at one site or another. Instead the spin is delocalized between the two sites.
There is a symmetric state with an energy of −t and an antisymmetric state with
energy t. So, if the system is in either one of these states, the probability of finding
a spin at a given site is simply 1/2.

Our next group of states to consider is the slightly more complicated situation
of configurations with two electrons. If the spins are on different sites and both
are pointing up or (equivalently) pointing down, we have another energy 0 con-
figuration. Remember that to be on the same site, they must be antiparallel. So,
there are four configurations with one up spin and one down spin. These con-
figurations are equivalent to each other. In our notation, the wavefunction looks
like

|𝜓⟩ = a|↑↓, 0⟩ + b|↑, ↓⟩ + c|↓, ↑⟩ + d|0, ↑↓⟩ (10.9)

The Schrödinger equation gives
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⎢
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(10.10)
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All the algebra of this eigenvalue problem is left for the reader, but the result
is that the lowest energy state with one up and one down electron has a lower
energy than the states obtained with two electrons of the same spin projection.
This causes an antiferromagnetic tendency in the system; spins on neighboring
sites tend to want to point in opposite directions. Of course, physically, this occurs
because the electrons have the ability to hop back and forth. So, as we guessed
above in the bipartite lattice, the two-site Hubbard model with one electron per
site should be a molecular antiferromagnet at low temperatures.

Now we skip ahead a bit; the states obtained from configurations with three
electrons have energies of U − t or U + t, and the state with four electrons has
an energy of 2U . That should be all of them. Once one has all the energies of
the possible system configurations, then the probability of each configuration is
weighted against the Boltzmann distribution to get the statistical mechanical
behavior of the system. The two sources of randomness in the system are
quantum mechanical and statistical (thermal fluctuations). This is true as we
scale the system up as well. Here we have considered only the two-site model,
but what if we include more sites? Then two things must be true: (i) there must
be some adjustment to the chemical potential as the number of electrons is
increased (we ignored this in our simple two-site model), and (ii) the matrix
eigenvalue equation becomes exponentially large, leading to computational
problems.

10.1.5 Real One-Dimensional Mott Systems

Can such an insulator really occur in one dimension? What systems would
become a Mott insulator in 1D? In our previous Gedanken experiment, we can
immerse our monatomic chain into a screening medium, thereby mitigating
such effects. This allowed us to discuss polyene chains and conductive poly-
mers as if the electron–lattice coupling were the dominant interaction, and
the simplification introduced many relevant concepts in a didactic way: ad
usum Delphini.4 But, in many real 1D systems, this Mott-like electron–electron
interaction is as large as the electron–lattice coupling, and the expectation of a
Peierls gap is not valid, even as a rough approximation. This is particularly true
for some conjugated polymers [2]. The study of 1D Mott insulators has become
important in trying to understand fractionalized quasiparticles. These are
excitations within the solid that appear to “split” charge and spin into separately
acting objects. Of particular interest is the argument that spin–orbit splitting is
a 1D signature; see, for example, the Sr2CuO3 system [3].

At this point there are so many excellent reviews and extensions of the Hub-
bard model to problems tangential to the Mott insulator that we are better off
leaving the reader here to their own discoveries. But Mott–Hubbard models are
very useful and should be a part of every working condensed matter physicist’s
language.

4 Dauphin was the title of the French crown prince. Obscene parts of classical books were censored
to protect the child’s soul. Such books were marked “ad usum Delphini.”
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10.2 The Superconductor

The Hubbard model has set us up for a discussion on systems to which it has
been widely applied: superconductors. One of the most stunning observations
in solid-state electronic transport of the past century must be that of supercon-
ductivity. Historically, the field of 1D metals was motivated by the search for
high-temperature superconductors as we have seen. And just as in the case of
Mott, the effect arises when electrons correlate.

10.2.1 The Basic Phenomena

Only a decade after Thomson’s discovery of the electron (1887) and Drude’s
model of the free electron gas (1900), Heike Kamerlingh Onnes discovered
that the resistivity of mercury “suddenly vanishes” when the sample is cooled
slightly below the boiling point of liquid helium [4]. In Figure 10.4 we see the
data that Onnes interpreted as a phase transition and where he first coined
the term superconductivity. So far, >40 elements have been found to become
superconducting at low temperatures, for some only at very low temperatures
(for example, Rh at 3.2× 10−4 K), and others only at very high pressures in
addition to the cooling (e.g. Si: Tc = 5.4 K at p> 110 kbar; Se: Tc = 6.9 K at
p> 130 kbar). There are also an astonishing 1000 or more superconducting alloys
and compounds known [5]. Two types of superconductors have been identified,
rather conveniently, namely, type I and type II. You can tell the difference by the
slightly different behaviors in magnetic fields of the two types.

Who would a superconductor wish to be; must answer me these three
questions … with apologies to Monty Python

There are three important parameters that define superconductivity – to have
a superconductor you must have the following:
1. A critical temperature at which the material becomes superconducting. This

is the huge drop in resistivity as seen in Figure 10.4. The critical temperature
is usually denoted Tc.

Figure 10.4 Heike Kamerlingh Onnes’ discovery of
superconductivity in 1911. At 4.15 K the resistance of a
mercury sample dropped from some tenth of an ohm to
less than 10−5 Ω [4].
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2. A critical magnetic field above which superconductivity breaks down. This is
accompanied by the Meissner effect or the complete repulsion of the magnetic
field by the superconductor. By now, you have all seen the “permanent magnet
floating above the superconductor” pictures. But these demonstrations are an
important part of determining if you truly have a superconductor. Moreover,
type II superconductors have an interesting caveat to this rule: they allow some
flux lines to penetrate the superconductor, but only in bunches, and these
result in current vortices.

3. A critical current density that is the maximum current density a superconduc-
tor can support, and beyond which it reverts to a normal conductor.5

Let’s look at these requirements a little more closely. The first is a critical tem-
perature. The structure of the conductivity vs. temperature is discussed in more
detail in specialty texts on superconductivity [6] as well as numerous review arti-
cles [5, 7]. For us however, in presenting Onnes’ discovery, we begin by noting
that he used words to the effect of the resistance “suddenly vanishes.” The disap-
pearance of the resistance and resulting persistent current is very exciting. From
our general knowledge of metallic conductivity, we may not be surprised to find
zero resistivity in a perfect, defect-free three-dimensional (3D) metal at absolute
zero, when all phonons are frozen out (ballistic transport). However, zero resis-
tance at a finite temperature, say, at 4.15 K as in Hg, or at 135 K as in the system
Hg–Ba–Ca–Cr–O, or even at room temperature, would contradict our intuition.
Perhaps this is because our intuition is built upon single particle state energetics
without correlation. But as we have just seen, correlation is a natural and real part
of materials systems. So maybe we shouldn’t be so surprised after all.

The sharp “turn on” of these effects can be a bit confusing however. The super-
conducting phase transition is remarkably sharp. The German word Sprungtem-
peratur expresses this sharpness better than the English term critical temperature
(sprung= jump). It is difficult to imagine that all possible electron scatterers sud-
denly vanish or move out of the way and much easier to assume that the electrons
change in such a way that they do not scatter anymore. This phase transition in
the electron gas is essential for the presently accepted theory of superconductiv-
ity, which was formulated in 1957 by Bardeen, Cooper, and Schrieffer (BCS) [8].
Note the time: almost half a century passed between H.K. Onnes’ discovery and
the BCS theory.

Next we have the Meissner effect or the total repulsion of magnetic field from
the volume of a superconductor. In 1933, Meissner and Ochsenfeld [9] found
that a superconductor expels an applied magnetic field so that within the super-
conductor the magnetic field is zero. More specifically, below Tc the flux density
within the superconductor is B = 0. Recall

B = H + 4πM (10.11)
In the perfect conductor:

mr̈ = −eE

5 Some scientists will take exception here. Many do not consider the critical current a fundament
sign of superconductivity. However, if we were in a lab looking for proof of such a state, we would
feel happier if we saw this.



10.2 The Superconductor 413

and current density is given as:

J = −ensṙ

where ns is the number of superconducting charges. So:

J̇ =
nse2

m
E.

From Faraday’s Law:

𝛁 × E = −1
c
𝜕B
𝜕t

and:

𝛁 × 𝜕J
𝜕t
= −

nse2

cm
𝜕B
𝜕t
.

And Amper’s law:

𝛁 × B = 4π
c

J

which then gives:

𝛁 × 𝛁 × 𝜕B
𝜕t

= −
4πnse2

mc2
𝜕B
𝜕t

Applying a vector identity and another of Maxwell’s eEquations:

𝛁 × 𝛁 × C = 𝛁(𝛁•C) − ∇2C
𝛁•B = 0

we get:

∇2
(
𝜕B
𝜕t

)
= 𝜆−2

(
𝜕B
𝜕t

)

𝜆 =

√
mc2

4πnse2 .

This 𝜆 is known as the penetration length. Let’s solve this differential equation
in the 1D case where the dimension x moves from a half space of superconductor,
to a half space of normal conductor. We get:

𝜕B
𝜕t

=
(
𝜕B
𝜕t

)

x=0
e−x∕𝜆

.

And B = 0 for the superconductor, so the susceptibility 𝜒 = 𝜕M∕𝜕H yields
𝜒 = − 1

4π
. If one increases the field applied to a superconductor, it eventually

destroys the superconducting state. The system is driven back into the normal
conducting state. In type I superconductors, there is no intermediate state
separating the superconducting and normal states when the field is increased.
However, in the type II superconductors, a mixed state occurs. This state
typically appears before the transition from superconducting into normal state.
In this mixed state, the magnetic field does partially penetrate the material
through the formation of an array of flux tubes. These flux tubes are simply
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tubes of normal state that enclose the flux of the field as it passes through the
superconductor. However, it is curious that the magnetic flux carried by these
tubules is quantized: some multiple of the magnetic flux quantum

Φ0 =
hc

2|e|
(10.12)

From a theoretical point of view, the perfect conductivity of a superconductor
comes from electron–electron mediated by phonons. We will discuss more of
this in a moment. However, we are starting our conversation with the presump-
tion that perfect conductivity is a natural outgrowth of the many-body problem
for these materials. Thus, we might conclude that the perfect diamagnetism of
the Meissner effect is an outgrowth of some Maxwellian boundary conditions
associated with the perfect conductivity. Can we justify this view?

No! As we can see from the derivation panel, the magnetic field inside a per-
fect conductor is constant over time, not exactly the Meissner effect (that says it
must be zero everywhere). What’s the difference? Well if we applied a constant
field Bo above Tc and then cooled the material to below Tc, the Meissner effect
suggests the field would be expelled from the superconductor, B = 0, whereas in
this perfect conductor the field would simply remain B0. This little Gedankenex-
periment tells us something rather important: the superconductor is NOT just a
perfect conductor. The perfect diamagnetism comes from something more; it is
fundamental to the superconducting state.

To capture this phenomenology, the London brothers introduced a model that
arbitrarily eliminates the time derivatives from above to yield

∇2B = 𝜆−2B (10.13)

In fact, this equation correctly reflects the Meissner effect and perfect diamag-
netism. Coupled with Ampere’s law,

∇ × J = −
nse2

mc
B (10.14)

It easily relates B and J . And since

B=∇ × A (10.15)

we get the so-called London equation in the Coulomb gauge:

J = −
nse2

mc
A (10.16)

Recall the Coulomb gauge ∇ ⋅A = 0 ensures 𝛁 ⋅ J = 0 from the continuity
equation.

This London equation implies something else about our system’s ground state:
it is rigid. Why? Well, in the ground state the total momentum of the system,
according to Bloch, is zero:

⟨ψ ∣ p ∣ ψ⟩ = 0 (10.17)

A rigid state is one that seems to spatially translate together. So lets imagine
that this is the case. An applied field (A for its vector potential) results then in

p = mv − eA∕c (10.18)
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and the expectation value

⟨v⟩ = eA∕mc (10.19)

This just reduces to the London equation

J =−ens⟨v⟩ (10.20)

And finally, we have the existence of a critical current. Again, we may be
tempted to assign this to the current value in which the magnetic field created by
the flowing current becomes so large that the superconductor might no longer
be able to expel it. Thus the superconductivity would be destroyed. But as in the
case of the Meissner effect, such an assumption would be misleading. In fact, as
we will see later in our BCS discussion, it is actually associated with the natural
energy scales within the system at which the electrons can no longer form the
superconducting state.

10.2.1.1 In What Compounds Has Superconductivity Been Observed?
In Table 10.1 we show the wide range of materials classified as supercon-
ducting. These include elements, alloys and intermetallic compounds, organic
charge-transfer salts, fullerenes, and oxides (also referred to as ceramic super-
conductors or cuprates since many of these involve copper oxide compounds).
For each class we selected a material among the highest Tc values known to date.
Notice that there is a rather big jump between the ceramics and all other classes
of superconductors. Indeed, the ceramic type II superconductivity is thought to
originate differently from that of other type I superconductors.

10.2.2 A Basic Model

There are actually two main components that comprise the microscopic theory
of superconductivity introduced by Bardeen, Cooper, and Schrieffer, otherwise
known as the BCS theory. The first component is the proposal that within the
lattice there can exist an effective attractive potential between two electrons with
opposite momenta and opposite spin.6 This potential will lead to the formation

Table 10.1 “Classes” of superconducting materials.

Class Material with highest Tc Tc (K) References

Elements Nb 9.2 [5a]
Alloys and intermetallic compounds Nb3Ge 23.2 [5b]
Polymers (SN)x 0.26 [5c]
Organic charge-transfer salts κ-(ET)2Cu[N(CN)2Cl] 12.8 [5d]
Fullerenes Cs2RbC60 33 [5e]
Oxides (“ceramics”) Hg–Ba–Ca–Cr–O at 150 kbar 135–160 [5f ]

6 A BCS-like approach can be formulated using entirely repulsive forces as well.
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of bound states that we call Cooper pairs. The second component of this theory is
that the system can form a single, coherent ground state with a condensation of
these Cooper pairs, known as a superconducting condensate, which is responsible
for all the above observed phenomena.

10.2.2.1 How Does an Attractive Potential Show Up Between Two Negatively
Charged Particles?
Let’s imagine for a moment an electron moving happily through a lattice as
though it were located on a path exactly between the atoms. Momentarily, the
electron should illicit a dielectric response from the atoms at the lattice sites
wherein the charge upon the site becomes polarized, forming a slight dipole. But
the electron moves on its way, and this appears as a very subtle wake of displaced
charge behind the electron. Now let’s say that another electron followed the
first, and “seeing” the atomic displacement ripple left by that first electron, it is
attracted to the momentary positive charge it “sees” in front of it. The result is
that each electron undergoes some retardation and a dispersion of the positive
charge ripple unless their speeds match. However, if the electrons are heading in
opposite directions so that momentum in the center of mass frame of reference is
zero, then there can be a short period of time in which the charged displacement
is not dispersed and the two electrons can exist in a resonance (a short-lived
bound state) with the charged distortion between them (Figure 10.5).

Now, we usually use the terminology that electron binding into Cooper pairs is
mediated by phonon exchange. After all, lattice distortions are merely phonons.

Superconductor lattice

– –

+ + + +

+ + + +

Electron moving through the lattice causes

a distortion with some net positive charge

A second electron moving in the opposite

direction is attracted to the lattice

distortion of the first electron

Electron

Electron

Using the diagrams introduced previously,

this can be summarized as a phonon

interaction

Phonon

(a)

(b)

Figure 10.5 The BCS ansatz in picture form. (a) The lattice deformation and resulting attractive
potential between electrons; (b) the Feynman diagram for the phonon exchange.
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But Cooper pair formation is fleetingly transient. After a very short time, each
electron in a given pair goes on to form new Cooper pairs with other electrons.
The distortion of the lattice is short lived and is sometimes called a virtual phonon
because its lifetime is too short to propagate through the lattice like a normal
phonon. This process continues with the newly formed Cooper pairs. The end
result is that each electron in the solid is attracted to every other electron in the
solid, thereby forming a collective network held together by interactions – but
more on that in a moment.

Cooper pairs are unusual composite particles. They do not stick together like
two protons forming a hydrogen molecule, but rather they are paired in a more
general way: they are correlated. This means that their spins and momenta are
coupled so that the electrons belonging to one pair move in opposite directions,
thus pairing momentum p with momentum −p. The pair correlation is effective
over a characteristic length, called the coherence length 𝜉. Usually 𝜉 is between
1000 Å and 1 μm, whereas the distance between two electrons in a solid is on
the order of 1 Å. Consequently, the Cooper pairs interpenetrate largely, and it
is perhaps not too difficult to understand that an ensemble of interpenetrating
Cooper pairs behaves very differently from a gas of noninteracting electrons.

Let’s not be too intimidated by these new particles. In conjugated systems
we saw an example of electron–phonon coupling: the Peierls distortion.
Superconductivity is another example. Cooper pairs are abstract entities:
momentum-correlated electrons. But they are no more exotic than Peierls “pairs”:
electrons and distortions paired in direct space. Besides, the pairing of particles
that are the opposite (in momentum and spin) is little different from pair bonding
among many human couples.
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10.2.2.2 Cooper Pair Binding
Much of the essence of the Cooper pair formation can be captured in a simple
two-body quantum mechanical problem. To see this we consider two electrons
interacting through V (r1 − r2). The eigenvalue problem is

[
− ℏ

2

2m
(∇2

r1
+ ∇2

r2
) + V (r1 − r2)

]
ψ(r1, r2) = Eψ(r1, r2) (10.21)

Using relative displacement, r = r1 − r2, and center of mass coordinates,
R = 1/2(r1 + r2),

[

−
ℏ

2∇2
R

2m∗ −
ℏ

2∇2
r

2𝜇
+ V (r)

]

ψ(r,R) = Eψ(r,R) (10.22)

with an effective mass m* and reduced mass 𝜇. The potential does not depend on
R, so solutions have the form

ψ(r,R) = 𝜓(r)eiK ⋅R (10.23)

reducing the eigenvalue problem to
[
−
ℏ

2∇2
r

2𝜇
+ V (r)

]
𝜓(r) = Ẽ𝜓(r) (10.24)

and

Ẽ = E − ℏ
2K2

2m∗ (10.25)

The lowest energy that can be obtained is one in which K = 0 or all center of
mass momentum is zero. In this case the Cooper pair electrons will have exactly
opposite momenta: pr = 0. Now the spatial part of the wavefunction (ψ(r)) can
have one of two symmetries either even, ψ(r) = ψ(−r), or odd, ψ(r) = − ψ(−r).
However, the total wavefunction must be antisymmetric because the electrons
transpose their momenta (K →−K ). Therefore they must form a spin singlet for
a spatially even wavefunction or a spin triplet for a spatially odd wavefunction.

To work our problem further, we will introduce the Fourier transform of the
eigenvalue problem

𝜓(k) =
∫

d3r 𝜓(r)e−ik ⋅ r (10.26)

which then gives

ℏ
2k2

2𝜇
𝜓(k) +

∫
d3r V (r)𝜓(r)e−ik ⋅ r = E𝜓(k) (10.27)

∫

d3q
(2π)3

V (q)
∫

d3r 𝜓(r)e−i(k − q) ⋅ r =
(

E − ℏ
2k2

m

)
𝜓(k) (10.28)

∫

d3k′
(2π)3

V (k − k′) 𝜓(k′) = (E − 2𝜀k)𝜓(k) (10.29)

Here we have changed q = k − k′ and defined the free electron energy as
𝜀k =

ℏ
2k2

2m
.
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Now we note that we can have a bound state between the two electrons when
E< 2𝜀k :

Δ(k) = (E − 2𝜀k)𝜓(k) (10.30)

where

Δ(k) = −
∫

d3k′
(2π)3

V (k − k′)
2𝜀k − E

Δ(k′) (10.31)

This is just the Schrödinger equation written in a slightly bizarre way. Now
looking back at our pictorial model for the lattice interaction with the electrons,
we imagine a slightly attractive potential mediated by this lattice distortion (i.e.
the phonon):

V (k − k′) = −V0 for 𝜀k′ , 𝜀k < ℏ𝜔D (10.32)

The potential is zero otherwise. Recall that𝜔D is the Debye frequency. We seek a
solution with a constantΔ, soΔ(k)=Δ. This implies an even spatial wavefunction
and thus a spin singlet. In this two-electron system, we can define the DOS per
spin as

𝜌(𝜀) = m3∕2
√

2ℏ3π2

√
𝜀 (10.33)

This yields

Δ =
V0Δm3∕2

√
2ℏ3π2 ∫

𝜔D

0

d𝜀
√
𝜀

2𝜀 − E
(10.34)

1 =
V0m3∕2

√
2ℏ3π2

[
√
𝜔D −

√

−E
2

arctan

(√
2𝜔D

−E

)]

(10.35)

which will now determine the value of the bound state energy E< 0 as a function
of V 0. This suggests the existence of a minimum value of V 0 to have a bound
state generally, as we would expect. So we take the limit as E → 0 – to get this
minimum:

V0,min =
√

2ℏ3π2

m3∕2√𝜔D
(10.36)

Now we know how strong this attraction must be to create such a bound pair.
But we have overlooked an important caveat. The only electrons that will be
affected by this attractive potential will sit at the Fermi level of the band structure.
We can account for this by setting up an attractive potential for the unfilled states
just above the Fermi level. Following the same steps as before,

V (k − k′) = −V0 (10.37)

𝜀k′ − 𝜀F ; 𝜀F < ℏ𝜔D (10.38)

ℏ𝜔D ≪ 𝜀F (10.39)

Δ(k) = Δ (10.40)
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Δ = V0𝜌(𝜀F )Δ∫

𝜀F+𝜔D

𝜀F

d𝜀
2𝜀 − E

(10.41)

2
V0𝜌(𝜀F )

= ln
(2𝜀F − E + 2𝜔D

2𝜀F − E

)
(10.42)

In the limit V0𝜌(𝜀F ) ≪ 1, E is close to 2𝜀F and

2𝜀F − E + 2𝜔D ≈ 2𝜔D (10.43)

Defining

Eb ≡ 2𝜀F − E (10.44)

we get

Eb = 2𝜔De−2∕V0𝜌(𝜀F ) (10.45)

This seems to indicate that in the case where there is a well-defined Fermi
surface separating the occupied and unoccupied states, a bound state can exist
regardless of the strength of V 0. This is of course a very different situation to our
expectations from free electron gasses. It is this bound state we refer to as the
Cooper pair.

Recall also that our final total energy, E, will include the center of mass motion:

E = EK=0 +
ℏ

2K2

4m
(10.46)

E = 2𝜀F − Eb +
ℏ

2K2

4m
(10.47)

In the limit E → 2𝜀F , we can still observe a bound state:

K = 2
ℏ

√
mEb (10.48)

But notice that such a state has a limit. The current density cannot exceed

J = nse
ℏK
m

= 2nse
√

Eb

m
(10.49)

This critical current density was mentioned above in our tests for superconduc-
tivity.

10.2.2.3 The BCS Ground State
Now let’s talk about the many-particle superconducting ground state itself. The
creation of Cooper pairs is clearly, energetically favorable: the mechanism pro-
posed does form a bound state. But can we say what the preferred state of the
system is if it is permitted to create such Cooper pairs? We might want to simply
assume all the electrons that can pair up will pair up since we gain energy advan-
tage this way. But we immediately run into a problem with this; Cooper pairs are
stabilized by the Fermi surface. If we remove all the electrons, the Fermi surface
will collapse, and pairing cannot occur. So we want a system state that maximizes
the Cooper pair numbers, thereby yielding the lowest ground state energy, and yet
still allows for all of these Cooper pairs to be stable (a well-formed Fermi surface).
Notice that here we are talking about a sort of ground state of the system.
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This challenge is exactly what BCS takes up. It will construct a many-particle
wavefunction that is essentially a multiplicative combination of the possible
“paired particle” states. But the theory proposes a highly restrictive set of
criterion with which to choose the paired electron states to be used. The pair
states that will be used in our many-particle wavefunction will have electrons
like this: |k ↑⟩, |k ↓⟩, | − k ↓⟩, | − k ↑⟩. So, the many-particle wavefunction will
be made up of pairs where the electrons have opposite k values and opposite
spins, just like we postulated earlier. This means there are 16 possible sin-
gle particle combinations (recall the Hubbard model). BCS further restricts
which one of these combinations we may choose for our construction of the
many-particle wavefunction: singlets ONLY! So in the end we would write down
the many-particle wavefunction as

ψs
0 =

∏

k

[
uk|0k0− k⟩ + vk|𝜓k𝜓− k⟩

]
(10.50)

And we have used a notation here such that:
|𝜓k𝜓−k⟩ is the presence of a pair with opposite momentum and opposite spins.
|0k0−k⟩ is the absence of such a pair (or a hole).
uku∗

k + vkv∗k = 1 is the normalization condition for the coefficients.
|vk|2 is the probability that a Cooper pair of momentum k is in the ground state.
|uk|2 is the probability that it is not.

Notice that our linear combination to form the many-particle wavefunction
is definitely a little strange: it involves the wavefunction of the electrons in the
Cooper pairs+ their mirror images in the Fermi sea once they have been removed
or their holes. Thus, we think of this many-particle state as some phase-related
combination of the electrons and holes of the system. But the electrons and holes
are sort of grouped together. Each pair of ±k electrons has the antisymmetric
nature of two fermions because we chose to use only singlets. But the wavefunc-
tion has a total momentum of zero and a total spin of zero because we have
included the hole below the Fermi level. The ±k grouping is simply a compos-
ite particle (or quasiparticle) with a bosonic character. The state is a coherent
collection of all of these bosons (again with zero total momentum). This is some-
what analogous to a Bose–Einstein condensate of bosons, but of course here we
are using composite particles. However, the statistics seem to be concerned only
with the bosonic or fermionic character, not whether the particles are composite
or not.

In terms of our defined coefficients above, we can say the following:
v−k = vk and u−k = uk (10.51)

The normal (nonsuperconducting) state is described as

|k| < kF →

{
|vk| = 1
|uk| = 0

(10.52)

|k| > kF →

{
|vk| = 0
|uk| = 1

(10.53)

at T = 0 all states below kF are filled.
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Following BCS, we have made a guess as to the nature of the many-particle
wavefunction. Now we need a Hamiltonian to apply it to. This should look like

H = H0 +Hphonon (10.54)

The first term here comes from the single particle picture interactions with a
frozen lattice just like we have already covered. The second term describes the
electron interactions mediated by phonons (the “ionic motion” picture we used
above) and is where the new physics comes from.

So

H0 =
∑

h(ri), Hphonon −
1
2
∑∑

Vphonon(ri − rj) (10.55)

And the single particle wavefunctions, |𝜓k⟩, are eigenvectors of H0 with eigen-
values 𝜀k . These form a complete orthonormal set of eigenvectors spanning the
variable space of the many-particle system. 𝜀k is usually referred to as the “ki-
netic energy” though that is really not exactly what it is, since it has the energies
of all the single particle electrons in it. The convention is to measure 𝜀k against
the Fermi level. The matrix elements of the first part of the Hamiltonian using
these single particle wavefunctions to build Cooper singlets look like

uku∗k′⟨0k′0−k′ ∣H0 ∣ 0k0−k⟩ ukv∗k′⟨𝜓k′𝜓−k′ ∣ H0 ∣ 0k0−k⟩

vku∗k′⟨0k′0−k′ ∣H0 ∣ 𝜓k𝜓−k⟩ vkv∗k′⟨𝜓k′𝜓−k′ ∣ H0 ∣ 𝜓k𝜓−k⟩ (10.56)

The primes are used to distinguish between two different k values and thus
different indices in the matrix. Notice that only the terms that do NOT have a
∣ 0k0−k⟩ give a nonzero value for the matrix element. So the nonzero terms look
like this:

vkv∗k′⟨𝜓k′𝜓−k′ ∣ H0 ∣ 𝜓k𝜓−k⟩ = |vk|
2
𝛿(k − k′)𝜀k + |vk|

2
𝛿(k + k′)𝜀k (10.57)

and our first term in the Hamiltonian gives us

⟨ψs
0 ∣ H0 ∣ ψs

0⟩=
∑

k
2𝜀k|vk|

2 (10.58)

What about the second term? For these interactions it is clear that a process
like the one described by our Feynman diagram in Figure 10.6 is taking place.
Consider a k/−k electron pair in the ground state. The interaction of the pair
with a phonon scatters it out of the ground state to be replaced by a k′/−k′ pair
that was not originally a part of the ground state.

So for this second term in the Hamiltonian, the only nonzero matrix elements
are of the form

[v∗k′⟨𝜓k′𝜓−k′ |u∗k⟨0k0−k|]Hphonon[vk|𝜓k𝜓−k⟩uk′ |0k′0−k′⟩] (10.59)

Following through with this,

Vkk′ = ⟨𝜓k′𝜓−k′ |V phonon|𝜓k𝜓−k⟩ (10.60)

Es
0 =

∑

k
2𝜀k|vk|

2 +
∑

k

∑

k′
Vkk′u∗kv∗k′uk′vk (10.61)
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Figure 10.6 A k/−k electron pair interacts with a
phonon to scatter into a k′/−k′ pair.
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This is our BCS ground state energy, and we must still get some idea of what the
coefficients uk and vk might be. Remember, physically they stand for the amount
of each single particle state that is mixed into our pair states (linear combina-
tion) that we are using to build the ground state (multiplicative combination) of
the system. There is a pretty standard way of doing this: variational treatment of
E(s)0 with one of the states. We will require E(s)0 to be a minimum with respect to
variations in vk

*.

The variational treatment in the derivation box to the left gives a characteristic
equation that relates the kinetic energy term to the coefficients and the Δ that
contains the potential of interaction. Notice this is true for each k. And, follow-
ing the derivation presented by Kaxira [10], we now choose specific forms for
the coefficients. (Parenthetical note: if you are following along with your “second
quantized approach to BCS handbook,” you will notice a striking parallel between
the choices of form for these coefficients and the creation and annihilation oper-
ators). Anyway, let’s say

uk = cos
[
𝜃k

2
ei𝜔k∕2

]
vk = sin

[
𝜃k

2
e−i𝜔k∕2

]
(10.62)

These satisfy the normalization conditions, and 𝜔k is the phase difference that
might exist between the two coefficients.
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2εk sin
𝜃k

2
cos

𝜃k

2
=

Δ∗ksin2 𝜃k

2
e−iwk − Δkcos2 𝜃k

2
eiwk

We start off by substituting our
expressions for the u’s/v’s into the
characteristic equation

= Re
[
Δ∗ksin2 𝜃k

2
e−iwk − Δkcos2 𝜃k

2
eiwk

]
Since the left side is real

2εk sin
𝜃k

2
cos

𝜃k

2
=

(
∣ Δk ∣ sin2 𝜃k

2
+ ∣ Δk ∣ cos2 𝜃k

2

)
cos(wk)

εk sin 𝜃k + ∣ Δk ∣ cos 𝜃k cos(wk) = 0 Get out your half-angle trig tables and
you can reduce the above to this. Notice
the smallest value you can get for Δk
occurs when cos(wk) goes to ±1. So use
this value to get two roots…

sin 𝜃k = −
|Δk|
𝜁k

, cos 𝜃k =
εk

𝜁k

sin 𝜃k =
|Δk|
𝜁k

, cos 𝜃k = −
εk

𝜁k

Where we have defined:
𝜁k ≡

√
ε2

k + |Δk|2

|uk|
2 = 1

2

(
1 +

εk

𝜁k

)
, |vk|

2 = 1
2

(
1 −

εk

𝜁k

)
Using the top root (the lowest energy so
it is the ground state whereas the second
is the first excited states) we derive the
following relations

|uk||vk| =
1
2

(

1 −
ε2

k

𝜁
2
k

)1∕2

= 1
2
|Δk|
𝜁k

To simplify our picture and get some insight into its meaning, let’s consider the
very simple case wherein we drop the k dependence in the u and v variables:

|u|2 = 1
2

(

1 + 𝜀
√
𝜀2 + |Δ|2

)

, |v|2 = 1
2

(

1 − 𝜀
√
𝜀2 + |Δ|2

)

(10.63)

Recall that the coefficients correspond roughly to the occupancy of Cooper
pair states. 𝜀 = 0 represents the system state in which both coefficients have the
value of 1/2. In other words, if these are behaving as a distribution function (as
we are claiming they are), then the 𝜀 = 0 point is equivalent to the Fermi level
of the system. Notice that the spread in the magnitude of the coefficient from
0 to 1 takes place over an energy range of roughly Δ centered on 𝜀 = 0. So the
occupation of Cooper pairs is significant only at energies near the Fermi level.

Next we examine what happens to the DOS in the system. We first recognize
that the number of states as we go from normal to superconducting must be con-
served:

g(𝜁 )d𝜁 = g(𝜀)d𝜀→ g(𝜁 ) = g(𝜁 )d𝜀
d𝜁

(10.64)

If we approximate g(𝜀) as gF (DOS at the Fermi level), we get

g(𝜁 ) =
gF|𝜁 |√
𝜁2 − |Δ|2

, for |𝜁 | > |Δ| (10.65)

(𝜁 ) = 0, for |𝜁 | < |Δ| (10.66)
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So what have we learned about this fascinating state of interaction and corre-
lation? Firstly, in the many-body ground state from BCS, the total linear momen-
tum is zero since the linear momentum of all Cooper pairs must be zero. This
means that all paired electrons in this collective state travel in opposite direc-
tions. A current flowing in the superconductor shifts the total moment from zero
rigidly, so on average, one electron in a Cooper pair has a slightly larger momen-
tum than its pair. They still travel in opposite directions however.

Secondly, a small amount of energy is needed to destroy the superconducting
state and make it normal. This energy is called the energy gap. Though we didn’t
derive it in our discussions here, at absolute zero the superconducting gap is

2Δ(0) = 7
2

kBTc (10.67)

Thirdly, causing just one of these electrons to collide and scatter from atoms
in the lattice means the whole network of electrons must be made to collide into
the lattice. This is energetically very costly. So the collective behavior of all the
correlated electrons in the solid prevents collisions with the lattice, since nature
prefers energy minimization. Here, the minimum energy state is to have no col-
lisions with the lattice.

10.2.2.4 Supplementary Thoughts
We should also reflect more carefully on a few points before completely leaving
this topic. The first of these is that when doing our “arguments” above, we chose to
allow only singlet states to participate in the Cooper pairs, so-called s-wave super-
conductivity. But of course this is not strictly necessary. We can bend the rules
a bit so that triplets and other spin states can be used in the construction of the
basis states for the Cooper pairs. For instance, d-wave superconductivity involves
quite different selections of spin states, but again they condense into a bosonic
ground state at low temperatures through the phonon coupling mechanism.

The next point we should really emphasize is in this so-called electron–phonon
coupling; it really is a phonon we are talking about here. This fact is reflected in
the BCS expression for the critical temperature:

Tc = 1.13
𝜂𝜔D

kB
exp

[
− 1

N(EF)V ∗

]
(10.68)

where 𝜔D is the Debye frequency (a characteristic phonon frequency), h = 2πℏ is
Planck’s and kB is Boltzmann’s constant, N(EF) is the electronic DOS at the Fermi
energy, and V * is a constant characterizing the electron–phonon interaction.

This very simple expression can be used to explain the high critical temper-
atures of classes of superconductors. For example, in the A15 superconductors
(mentioned in earlier chapters), the Fermi level is assumed to be within a narrow
band dominated by the d orbitals of the transition elements (for example, Nb in
Nb3Ge). Hence, the DOS at the Fermi energy is large, and Tc is large. Similarly,
the increase of Tc in alkali-doped fullerene crystals when going from Na to K to
Cs can be interpreted as follows: the fullerene lattice “swells” by alkali intercala-
tion. The larger the ionic radius of the dopant, the greater the swelling. This leads
to a smaller overlap of the molecular π orbitals and thus to narrower bands and,
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according to our Eq. (10.68), to higher Tc. So this little equation can be useful in
setting trends among superconductors.

But as we said, it is the phonon in BCS theory that we want to emphasize for a
moment. The relevance of phonons can be tested by looking for an isotope effect.
In our critical temperature Eq. (10.68), Tc is proportional to the Debye frequency
𝜔D. This frequency should vary with the square root of the atomic mass M. Con-
sequently, we expect

Tc ∼ M−1∕2 (10.69)

M can be varied by exchanging it with another isotope. The bonding will look
exactly the same, so force constants do not change. While it is a bit expensive to
do this, the test has been carried out for many different superconductors, and in
general Tc does vary as M−1/2. So far, any occasional deviation from this rule has
been explained through a known isotopic dependency of V *.

Naturally, as we have come to expect, in 1D and organic superconductors, we
find ourselves having to differentiate between other interactions between the
electrons and the phonon exchange. In Chapter 2 we mentioned briefly that the
occurrence of the BCS superconductivity gap stops the martensitic distortion.
Competition between various low-temperature instabilities is a salient feature of
1D metals. Arguments for or against any such hypotheses are typically rooted in
studies of this isotope effect. Specifically, in organic superconductors, the carbon
isotope C-12 (natural abundance 99%) is replaced by C-13 (natural abundance
1%), or protons (natural abundance 99.985%) can be replaced by deuterons (nat-
ural abundance 1.5× 10−4%).

But there is more to this “superconducting gap.” We have already seen that
in the Peierls case, electron–phonon coupling leads to a gap at the Fermi level
in the electronic DOS. And, similarly, in superconductivity there is also a gap
at the Fermi level. The formation of Cooper pairs removes states within 𝜀F ±Δ,
and thus a gap is created. But in Peierls systems we also encountered new parti-
cles: the solitons. Their energy states are in the Peierls gap and, in the ideal case,
exactly at the midgap. The question might be posed, where in Figure 10.7 the
Cooper pairs ought to be drawn. But, unlike solitons, Cooper pairs cannot be
depicted in a diagram of the single-electron DOS!

The concepts and analysis above forms the basis from which superconductivity
derives. There are, however, further subtleties that make the parallel with Peierls

0–

gF

�Δ��Δ�

g(ζ)

ζ

Figure 10.7 Graph of the density of states in the
BCS model near the Fermi level. Notice the onset
of the gap with magnitude 2|Δ|.
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systems even more compelling. Most importantly, as already hinted at above, the
division of classes of superconductors suggests that there are different phenom-
ena (other than simply higher Tc) observed in the compound oxides as for the
elemental superconductors. In fact, this is quite right; the so-called “high Tc”
materials are quite different. Though the fundamental mechanisms of pairing
leading to a superconducting gap are still valid, other curious characteristics arise
in these materials. As an example, we restate the situation of the critical mag-
netic field. As stated above, the elemental superconductor is sensitive to applied
magnetic fields with a certain critical field, for a given temperature, destroying
the superconducting state. Below that critical field strength Bc, the type I (ele-
mental) superconductor is a perfect diamagnet. In the “type II” or compound
superconductors, there are two such distinctive field values: Bc1 and Bc2. For a
magnetic field B less than Bc1, the superconductor exhibits a type I response to
the field. For a magnetic field B greater than Bc2, the superconducting state is
destroyed as in the case of type I again. However, something unique occurs when
the magnetic field is between Bc1 and Bc2. In this case, the superconductor has
zero resistance but allows partial flux penetration! This is referred to as a vor-
tex state and is pictured as cores of normal material in which the magnetic field
penetrates, surrounded by material in the superconducting state responding to
that field. Naturally, as the applied magnetic field increases, the number of nor-
mal cores will also increase until, eventually, the material can no longer sustain
anymore. At this point Bc2 has been reached and the superconducting state col-
lapses.

But why should such an intermediate state exist in one type of superconductor
and not the other? The answer comes from a more careful examination of the
structure of the type II superconductors. This is where the subtle parallel to
Peierls systems occurs and where dimensionality begins to play an important
role. In most of the type II high Tc materials, the ceramic’s crystal structure
is composed of two-dimensional (2D) planes of conducting oxide. For these
examples of high Tc materials, the conducting set of metal oxide planes is
surrounded by a set of rare earth elements – yttrium, lanthanum, neodymium,
gadolinium, and erbium. These surrounding species play important roles to
modify the current-carrying planes. For instance, in the compound YBa2Cu3O7−x
(a black orthorhombic material, where x is the variable for oxygen content), CuO
planes act as the 2D planes of conductivity. And, in fact, the critical temperature
of the superconducting state depends intimately on the overall stoichiometry
of the CuO sheets with the Tc rising as the oxygen content rises. But this is
not to say that a layer of CuOx will be a superconductor on its own – if you
could separate out such a single sheet. It was recognized early on that a charge
reservoir was necessary for the establishment of electron pairing. This is the
role of the surrounding crystal structure. Moreover, the heavy ions can also play
some part in modification of specific phonon states. These are roles that are, in
fact, quite similar in nature to that of the dopant ions in conducting polymer
systems – just add one more dimension. Although the YBa2Cu3O7−x compound
(generally abbreviated YBCO) is one of the most widely studied, this behavior
seems to hold true for the rest of the high-temperature superconductors as
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well [11]. This parallel is not accidental. Superconducting behavior should be
expected in some organic systems based upon similar mechanisms.

We are not quite finished with our discussion of inorganics. Clearly the example
of the ceramic superconducting systems has shown that superconductivity can
occur under conditions not previously anticipated, and even under conditions
we would have thought prevented it from occurring (after all gadolinium is mag-
netic!). This happens again in the case of magnesium bromide, MgB2 [12]. This
common compound becomes superconducting at 39 K, an amazingly high Tc
for a metallic material. The puzzling little compound, which practically every
chemist has on his/her shelf, also presents us with a real mystery – more than
one superconducting gap. But again, much of the mystery can be resolved in
arguments of dimensionality. Like the type II cuprate superconductors above,
MgB2 is a layered compound. Only in the cuprate case, the conducting planes
are insulators when undoped at ordinary temperatures. However, MgB2 is always
a metal. Structurally, the boron of this compound forms the simple honeycomb
pattern found in graphite, whereas the Mg sits between planes centered on these
hexagons. At first glance, one might think that a straightforward application of
type II superconductor theories is all that is needed to explain the phenomena
related to MgB2, but as it happens, this doesn’t do it. MgB2 simply doesn’t act like
a type II superconductor altogether. In the end, it was our old friend BCS theory
that did it.

In traditional BCS theory, pairing can be seen as a coupling to the lattice where
a single electron emits and reabsorbs a phonon. This gives rise to the enhanced
electron mass observed. But in MgB2 these two values were apparently different.
It was quickly realized that more than one type of electron might be involved in
the pairing [13]. As in graphite, the honeycomb lattice is held together with σ
bonds in plane. The π bonds above and below the graphene lattice allow for the
movement of charge, and the same is true of boron with the π bonds forming weak
pairs. But boron has fewer electrons than carbon, and not all the 𝜎 bond states are
filled. Thus, a lattice vibration in the boron plane has a much more dramatic effect
on electron pairing. Surprisingly not all the electrons are needed to form strong
pairs confined to the plane. Since two different populations of electrons are acting
to create the pairing effect, clearly there are multiple energies that can break the
pairing – thus multiple superconducting gaps. Stated another way, electrons on
different parts of the Fermi surface form pairs with different binding energies. The
two types of pairs are coupled, and at 39 K the superconducting gaps converge,
destroying superconductivity altogether.

10.2.3 Superconductivity Measurements Are Tricky

Have you synthesized a new superconductor? Because superconductivity is a
sharp phase transition, the effect is theoretically quite stark when resistance or
magnetic susceptibility is followed as a function of temperature. But complica-
tions arise because real samples are frequently small, oddly shaped, brittle, and
hydroscopic or pyrophorous. Moreover it is often that low temperatures, high
pressures, and magnetic fields have to be applied simultaneously, making the
experiments tough to do. And of course, there is the fact that bulk materials can
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have multiple phases and impurities. Many times has a sample turned out to
be nonsuperconducting, but there was a small superconducting contamination,
which manifested itself as a little kink in the resistance vs. temperature curve,
and then – following this hint – a new superconductor was found.

Four lead methods are typically employed in resistance measurements, but
since we are mainly interested in resistance jumps and not in absolute values, it is
not necessary to apply four point contacts or the van der Pauw technique. Often
measurements can be carried out on pressed or “sufficiently well-squeezed” pel-
lets because the contact resistance between the grains is bridged by the Josephson
effect (superconducting tunneling through barriers; see [6]).

In some systems, such as organic superconductors and fullerenes, the coher-
ence length might be very small, and the overall resistance of a granular film
would not change although the core of the granuli could be superconducting. A
superconductivity test independent of external and internal contact resistances
is the measurement of the magnetic susceptibility. This method makes use of the
Meissner effect, which expels the applied magnetic field. The superconducting
quantum interference device (SQUID) magnetometer is the typical tool for this
test, and susceptibility vs. temperature curves is straightforward. An alternative
is the mutual induction measurement using small concentric coils, as indicated
in Figure 10.8. The whole device can be made so small that it will fit through the
outlet of a liquid helium container. The inner coil is excited by a reference signal of
a lock-in amplifier, and the induction signal picked up at the outer coil is fed to an
amplifier input. The sample is placed inside the coils, and, when it becomes super-
conducting, the induction suddenly changes (the inductance of a coil depends on
the susceptibility of the material inside the coil). To calibrate the device, a small
piece of a known superconductor is placed into the coil together with the sample.
Since the inductance change is proportional to the volume becoming supercon-
ducting, this method allows one to estimate the superconductive volume fraction
of the sample.

As a typical example of the use of the induction technique, consider the work
done by Roth et al. of this book to measure superconductivity in powder samples

Figure 10.8 Simple homemade mutual inductance
device to measure superconducting transitions
through the neck of a standard helium container.

Sample

Lock-in

input

Through neck

of helium container

Lock-in

reference
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of potassium-intercalated graphite. This material is very pyrophorous. Therefore
the potassium graphite powder was mixed with vacuum grease under argon
atmosphere. This was sufficient to keep an oxygen-free environment for further
sample handling. The paste was squeezed into the coils together with a short
piece of iridium wire stuck in as a calibrator (Tc of iridium is 0.14 K). The device
was put into a dilution refrigerator, and both the iridium and the potassium
graphite transitions were easily observed. Unfortunately no transitions were
observed when several potassium-doped conjugated polymers were treated the
same way, but the investigations were not sufficiently systematic to completely
exclude the possibility of superconductivity in potassium-doped polymers in the
dilution refrigerator temperature range.

Zero resistance and ideal diamagnetism are convincing evidences of supercon-
ductivity. But the experimental methods discussed above do not yield absolute
values; they reveal changes in the conductivity and changes in the susceptibil-
ity. Therefore precautions must be taken before relating the observed changes
to the occurrence of superconductivity. A trivial piece of advice is to measure
controls, the empty sample holder, or nonsuperconducting dummy samples. The
inductance method is especially sensitive to the presence of solder (this con-
tains lead) or other superconductive additives in the coil vicinity. Another pre-
caution is checking the superconducting state by the application of magnetic
fields. Superconductivity is destroyed by magnetic fields. High critical temper-
ature implies high critical field with the details depending on the type of the
superconductor. If Tc is very low, in the mK range, the earth magnetic field might
be strong enough to destroy superconductivity. On the other hand, the critical
fields of high Tc superconductors can be as high as 100 T or above. For “ET” salts
with Tc ∼ 10 K, the critical field is about 20 T. When resistance or susceptibil-
ity anomaly is observed, which is independent of the applied magnetic field, we
should hesitate with assigning it to superconductivity.

10.2.4 Superconductivity and Dimensionality

As we have seen, the superconducting state is a delicate interplay of lattice insta-
bility and electron correlation. So it is a reasonable guess that dimensionality
could play some role in the correlation lengths of a system. Clearly lattice sta-
bility can be more easily tuned in low-dimensional systems. Indeed, the quest
for high-temperature superconductors has been one of the driving forces in the
field of 1D metals. For a long time, intermetallic compounds with A15 structure
held the world record in high Tc. Because of the van Hove singularities in their
1D band structure, there are sharp peaks in the electronic DOS. If the Fermi level
happens to fall into such a peak (which can happen when materials are sufficiently
doped), N(EF) will be large and we get a high Tc. The same singularities lead to
lattice instabilities, to soft values for V *, and again to high Tc. Of course, there is
always an upper limit for Tc: at some point the lattice will become too unstable
and fall apart.

In Chapter 2 we presented Little’s proposal [14] of a conjugated chain with
appropriate side groups that should superconduct. Electrons moving along
the chain would be spin and momentum correlated by excitations in the side
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groups. These excitations take the role of the phonons in a traditional BCS
superconductor. According to Little’s estimates, this mechanism could lead
to Tc values as high as room temperature. Synthesis efforts following Little’s
course have not lead to new superconducting materials. In fact, (SN)x, a polymer
composed of sulfur–nitrogen chains (Chapter 2), is the only polymer that
has become superconducting so far. Its transition temperature is very low
(Tc = 0.26 K). In addition, the chains are close; they sufficiently interact to
suppress one-dimensionality. However, superconductors, where 1D aspects are
most pronounced, are the Bechgaard salts (Chapter 2). Here again, the compe-
tition with the other instabilities typical for 1D metals limits Tc to a few kelvin.
This same competition exists to some degree in the oxide superconductors [15],
as discussed above, but, as we now know, some aspects of one-dimensionality or
low dimensionality also exist in the cuprates.

10.2.5 More on Organic Superconductors

Organic superconductors can be subdivided into 1D, 2D, and 3D solids provided
that fullerenes are classed with the organics; in Table 10.1 fullerenes are listed
as a separate class [16]. This subdivision is based on the topology of the Fermi
surface. As a reminder, 1D, 2D, and 3D Fermi surfaces are shown in Figure 10.9.
In low-dimensional solids the Fermi surfaces are open, and they consist of two
parallel planes for 1D solids and cylinders for 2D solids. Weak interactions in
higher dimensionality (interchain and interplane) lead to warping and barrel-like
distortions until the Fermi surface finally becomes closed; in this case we speak

Figure 10.9 Different shapes of Fermi
surfaces: quasi-one-dimensional (a),
quasi-two-dimensional (b), and
anisotropic three-dimensional (c).
Source: After Jérome [7].

(a)

(b)

(c)
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of a 3D solid. The study of the Fermi surface has been nicknamed “fermiology”
and is widely used to understand the properties of 3D metals.

Among the most important experimental tools in fermiology are oscillations
in the magnetoresistance known as Shubnikov–de Haas (SdH) oscillations and
oscillations in the magnetic susceptibility known as de Haas–van Alphén (dHvA)
oscillations. These oscillations occur when the resistance or the susceptibility is
measured as a function of the magnetic field. The magnetic field exerts a lateral
force on moving electrons (Lorentz force), as in the Hall effect. At sufficiently
low temperatures and with the field strong enough, the electrons move in circles
(Landau orbits) that are further split by the Zeeman energy associated with the
spin of the electron in the field. The radius (and thus energy) of a Landau orbit
depends on the magnetic field, and the resulting energy spectrum is made up of
these Landau levels – each separated by the cyclotron energy. In each Landau
level, the cyclotron and Zeeman energies as well as the number of electron states
all increase linearly with applied B-field strength. Thus, as the B-field strength
increases, the Landau level moves to higher energies. Eventually, with increasing
B-field strength, the energy level of the electrons in the Landau levels reaches the
Fermi energy, and the level becomes depopulated as the electrons are now free to
move as a current. So, the passage of the Landau orbits through the Fermi surface
leads to oscillations in resistivity and other properties dependent on the electron
density at the Fermi level.

In previous decades high-purity crystals of silver, gold, copper, etc. were studied
extensively using this method; a recommended monograph is Shoenberg’s book
[17]. Some of the organic charge-transfer salts form very perfect single crystals,
and these materials have led to a renaissance in fermiology [7]. As an example we
show the SdH oscillations of 𝛽H(ET)2I3 in Figure 10.10 [9, 18]. The dimension-
ality can be deduced from the angular dependency of the oscillations when the
sample is rotated in the magnetic field. (In 1D metals with totally open Fermi sur-
faces – Figure 10.9a – oscillations are not observed because the electrons cannot
move in circles!)

10.2.5.1 One-Dimensional Organic Superconductors
The Bechgaard salt (TMTSF)2PF6 (TMTSF, tetramethyltetraselenafulvalene)is
the organic charge-transfer salt in which superconductivity was observed for the
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Figure 10.10 Shubnikov–de Haas
oscillations in βH(ET)2I3. Source: Kang
et al. 1989 [18]. Reproduced with
permission of American Physical Society
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Table 10.2 Critical temperatures of TMTSF superconductors.

Compound Tc (K) Pressure (kbar)

(TMTSF)2PF6 1.1 6.5
(TMTSF)2AsF6 1.1 9.5
(TMTSF)2SbF6 0.36 10.5
(TMTSF)2TaF6 1.35 11
(TMTSF)2ReO4 1.2 9.5
(TMTSF)2FSO3 2.1 6.5
(TMTSF)2ClO4 1.4 Ambient

Source: After Williams et al. [7].

Figure 10.11 TMTSF,
tetramethyltetraselenafulvalene.

Se

Se Se

Se

H3C

H3C CH3

CH3

S

S

S

S

Figure 10.12 TTF,
tetrathiafulvalene.

first time [19]. A pressure of 6.5 kbar had to be
applied, and superconductivity occurred at Tc ∼ 1.1 K.
The Fabre–Bechgaard salt (TMTTF)2CIO4 (TMTTF,
tetramethyltetrathiafulvalene) is the only member of the
1D family that becomes superconducting at ambient
pressure (Tc = 1.4 K [20]). The transition temperatures of
TMTSF superconductors are listed in Table 10.2.

The two compounds TMTSF and TMTTF are similar with the S atoms of
TMTTF being replaced by selenium atoms in TMTSF as seen in Figure 10.11.
Both derive from tetrathiafulvalene (TTF) with methyl groups added
(Figure 10.12).

The anions PF6, AsF6, SbF6, TaF6, ReO4, and ClO4 act as electron acceptors, but
beyond that they do not participate in metallic conductivity or superconductivity.
Conductivity is exclusively due to the overlapping of the π orbitals of the cations.

This overlap is different from the p orbital overlap forming the π bands in
conjugated polymers. The different types of overlaps are schematically shown
in Figure 10.13. Overlapping in conjugated polymers occurs sidewise, along
the polymers axis, and leads to very wide bands, W ∼ 10 eV, while overlapping
in charge-transfer salts is top to bottom, along the stacking axis, and leads to
rather narrow bands, W ∼ 1 eV. Conjugated polymers are intramolecular 1D
conductors, while charge-transfer salts are intermolecular conductors. (There
is also an intermolecular, for example, interchain overlapping in conjugated
polymers with W ≤ 1 eV and an interstack overlap in TMTSF charge-transfer
salts with W ≪ 1 eV.)

Perhaps selenium/organic superconductors are not very spectacular, because
selenium itself is a superconductor, albeit at very high pressures (Tc = 6.9 K
for p> 130 kbar). The ET salts are sulfur-based organic superconductors and
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Figure 10.13 Different
overlaps of the electronic
wavefunctions forming the
conduction bands in
conjugated polymers and in
molecular crystals. (a) Overlap
of atomic p orbitals forming
the π band of conjugated
polymers and the molecular π
orbitals in aromatic systems
(benzene, fulvalene, etc.). Two
chains are shown. (b) Overlap
of the atomic p orbitals (or the
molecular π orbitals) forming
the conduction band of
molecular crystals (e.g. of
charge-transfer salts). Two
stacks are shown.

from that point of view perhaps more exciting. The importance of the TMTSF
compounds lies in their one-dimensionality and in the possibility they offer to
study the competition between superconductivity and other 1D instabilities.
(TMTTF)2Br2 becomes superconducting at 26 kbar; Tc = 0.8 K. It is the first
sulfur-based superconductor observed in the (TM)2X series [21].

Figure 10.14 shows a “generalized phase diagram” of the (TM)2X series,
where TM stands for tetramethylene derivatives of thio- or selenofulvalene
and X denotes inorganic anions (PF6, Br, ClO4). We move along the abscissa
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Figure 10.14 Generalized phase
diagram of the (TM)2X series of
one-dimensional solids. Source: After
Jérome [18]. The arrows indicate the
position of the respective substances
at ambient pressure: (1) (TMTTF)2PF6;
(2) (TMDTDSF)2PF6 (tetramethylene
dithiodiselenofulvalene); (3)
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by applying external pressure or by changing the chemical composition and
thus exerting “internal pressure.” The arrows indicate where the respective
compounds are located at ambient external pressure. The region in which super-
conductivity occurs is denoted SC. An important feature of this diagram is the
vicinity of superconductivity (SC) and spin density waves (SDWs). At ambient
pressure, only (TMTTF)2ClO4 shows a normal-to-superconducting transition
upon cooling. All other compounds go into an insulating state, which can be
suppressed by about 12 kbar for (TMTSF)2PF6. The TMTSF compounds have
been extensively reviewed in the references [22]. Further 1D superconducting
systems can be found in Refs. [5, 7, 23].

10.2.5.2 Two-Dimensional Organic Superconductors
In 1D superconductors, the competition with the other instabilities seems to limit
the critical temperature. Therefore stronger interstack coupling appears to be
desirable. The ET salts exhibit fairly strong lateral coupling between the cations
so that they are 2D rather than linear. As evidenced from fermiology the Fermi
surface is cylindrical, and the conductivity is isotropic in the plane of the donor
molecules (the in-plane to out-of-plane anisotropy is about 103).

Figure 10.15 shows the chemical structure of bis(ethylenedithio)tetrathiaful-
valene (BEDT-TTF), otherwise known as ET. It is a sulfur-based relative of
TTF and contains eight instead of four chalcogen atoms. (ET)2ReO4 was
the first sulfur-based organic superconductor (Tc = 2 K at p> 4.5 kbar [24]),
κ-(ET)2Cu[N(CN)2]Br is the superconductor of the group with the highest
ambient pressure Tc (11.6 K) [25], and κ-(ET)2Cu[N(CN)2]Cl with Tc = 12.8 K
at a pressure of 0.3 kbar [5] holds the absolute Tc record in this competition.
Table 10.3 summarizes the ET superconductors. Note that the ET donor can
be combined with a large variety of acceptors and the system exhibits a rich
diversity in structures. There are groupings, like the 𝛽 and the 𝜅 family, but for
the unskilled observer the structure is not easy to comprehend. We note that ET
layers exist in both families (in the 𝛽 family ET molecules form a honeycomb-like
sulfur network; in the 𝜅 family it is more complicated). These donor layers
are separated by layers of acceptor molecules. For further details we refer to
Refs. [7e, f ].

The layered structure of ET salts advances these substances into the vicinity
of the high-temperature ceramic copper oxide superconductors, which also con-
sist of “metallic” layers (in this case CuO2 layers) separated by “inert” spacers
and counterions. In both classes of superconductors, the coherence length 𝜉 is
very anisotropic. In κ-(ET)2Cu[N(CN)2]Br, 𝜉perpendicular = 37 Å within the plane
of the donor layer and 𝜉parallel = 4 Å perpendicular to the plane. The latter value is
quite remarkable because it is much smaller than the distance (∼15 Å) between
the organic layers [7], thus stimulating discussions on unconventional interplane
coupling mechanisms.

Figure 10.15 BEDT-TTF or
ET – bis(ethylenedithio)tetrathiafulvalene.
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Table 10.3 Critical temperatures of ET superconductors.

Compound Tc (K) Pressure (kbar)

(ET)2ReO4 2.0 4.5
β-(ET)2I3 1.4 Ambient
β*-(ET)2I3 8.0 0.5
γ-(ET)3(I3)2.5 2.5 Ambient
θ-(ET)2I3 3.6 Ambient
κ-(ET)2I3 3.6 Ambient
α-(ET)2I3 7–8 Ambient
(α/β)-(ET)2I3 2.5–6.9 Ambient
β-(ET)1.96(MET)0.04I3 4.6 Ambient
β-(ET)2IBr2 2.8 Ambient
β-(ET)2AuI2 4.98 Ambient
κ-(ET)4Hg3.8Cl8 1.8

5.3
12
29

κ-(ET)4Hg2.89Br8 4.3
6.7

Ambient
3.5

(ET)2Hg1.41Br4 2.0 Ambient
α-(ET)2[(NH4)Hg(SCN)4] 1.15 Ambient
(ET)3Cl2⋅2H2O 2.0 16
κ-(ET)2Cu(NCS)2 10.4 Ambient
κ-(ET)2Ag(CN)2⋅H2O 5.0 Ambient
κ-(ET)2Cu[N(CN)2]Br 11.6 Ambient
κ-(ET)2Cu[N(CN)2]Cl 12.8 0.3

Source: After Williams [7e].

10.2.5.3 Three-Dimensional Organic Superconductors
In Chapter 1 we introduced fullerene as a zero-dimensional modification of car-
bon: in a C60 ball, 60 π electrons are confined in a sphere about 10 Å in diameter.
So a fullerene molecule can be regarded as a quantum dot. But 60 is already a
fairly large number, so the C60 molecule is really a “mini-solid.” And, if we think
of it as a rolled-up graphene plate or as the coiled-up chain of a conjugated poly-
mer, then we might expect to find both polyacetylene and graphene aspects in its
behavior. But these mini-solid C60 molecules can be used to build a regular array
in three dimensions: fullerite crystal.7

As with conjugated polymers and graphite, fullerite can be intercalated with
various dopants. In conjugated polymers and graphite, both acceptors and donors
can be intercalated, but in fullerite donor doping is preferred (so alkali metals are
pretty commonly used). Figure 10.16 shows a plane of the doped fullerite crystal.
The hatched circles mark interstitial sites (tetragonal and octahedral) that can be

7 Some scientists prefer the term Fullerene crystal, but we find that confusing since fullerene itself
is a crystal of sorts. Of course our structure for the 3D array may not be chemically consistent with
the fullerite name, but it does some the mini/macro solid ambiguity.
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Figure 10.16 Crystal structure of fullerene.
The hatched spheres present the interstitial
sites that can be occupied by dopant ions.
Source: After Lüders [26].

a0

C60 fcc A1C60 fcc (T > 150 K)

A3C60 A15 (cubic)

A2C60 fcc A3C60 fcc

A4C60 bct A6C60 bcc A6C60 fcc

Figure 10.17 Summary of structure types of alkali-intercalated C60. The A15 structure has only
been observed in the alkaline earth phase, Ba3C60. Source: After Fleming et al. [27].

occupied by dopant ions. In Figure 10.17 we present a more sophisticated view
of the spatial arrangement of C60 balls and dopant ions for a variety of doping
stoichiometries.

Alkali graphite intercalation compounds become superconducting, usually
with a critical temperature below 1 K. In the Cs–Bi graphite system, Tc values
up to almost 5 K have been observed. But alkali-doped fullerites are also
superconductors, and surprisingly the critical temperature of these compounds
is as high as 33 K. Thus, they beat the ET charge-transfer salts by a factor of 3!
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Figure 10.18 Variation of T c with the lattice
parameter a0 for various compositions of A3C60.
Source: After Lüders [26].

For a comparison of graphite and fullerite superconductors, see Refs. [26, 28].
We have already mentioned that the C60 balls in a fullerite crystal move further
apart when the material is doped. This increases the DOS at the Fermi surface
and thus Tc increases. The behavior is nicely shown in Figure 10.18, where the
critical temperatures of A3C60 are plotted vs. the lattice parameter a0 (in A3C60
the symbol A stands for alkali metal). An intensive study of fullerene compounds
has been underway for some time now, and scientists have moved to working
on chemically modifying the carbon balls using cycloaddition schemes. It might
well turn out that with the presently highest critical temperature of 33 K [29],
the maximum Tc has not yet been reached for this materials class [30].

It should be recognized, however, that the developments of smaller fullerene
derivatives such as C20 [31] and C36 have suggested modifications to our view of
three dimensionally based organic superconductors. Specifically, these smaller
cage molecules can have extraordinarily high DOS [32] at the Fermi level. Fur-
ther, they exhibit significantly stronger electron–phonon coupling constants than
their larger cage counterparts (C60, C70, C80) [33].

10.2.6 Trends

In research and development it is not possible to predict the future by extrap-
olating the past. Discoveries are unforeseen; otherwise they would not be called
discoveries. In retrospect, most evolutions begin exponentially, continue linearly,
and then saturate. But there is no way of foretelling the saturation level from the
exponential start. Nevertheless it is fascinating to look at the historic develop-
ment in a certain field of science and to speculate on the future. In this respect it
does not matter whether the selection of historic events is biased or not, because
we use the data only as a ladder for our fantasy.

A selection of historic events in organic (and high Tc) superconductivity is
given in Table 10.4. If the highest Tc values are plotted vs. the year of the respec-
tive observation and if the various compounds are summarized into teams, races
can be arranged. Figure 10.19 shows the competition of metallic, organic, oxide
[34], and fullerite superconductors. We have the impression that the oxides will
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Table 10.4 Chronology of organic superconductors.

Year Organic superconductors

1962 Synthesis of TCNQ
1970 Synthesis of TTF
1973 TTF–TCNQ (“first organic metal”)
1978 Synthesis of ET
1979 Bechgaard salts (TMTSF)2X, superconducting under pressure, Tc ∼ 1 K
1981 (TMTSF)2ClO4, first organic superconductor at ambient pressure, Tc ∼ 1.4 K
1983 β-(ET)2ReO4, first sulfur-based organic superconductor under pressure, Tc ∼ 1 K
1985 Synthesis of C60

1986 Superconductivity in La–Ba–Cu–O
1987 Tc above liquid nitrogen temperature
1987 κ-(ET)2Cu(SCN)2, Tc ∼ 10.4 K
1990 κ-(ET)2Cu[N(CN)2]Br, Tc ∼ 11.6 K

κ-(ET)2Cu[N(CN)2]Cl, Tc ∼ 12.8 K at 0.3 kbar
1990 C60 in large quantities available
1991 Superconductivity in alkali-doped C60

1993 Tc = 133 K in Hg–Ba–Ca–Cu–O
1994 Tc = 160 K under pressure in Hg–Ba–Ca–Cu–O

Source: Partially after Williams et al. [7f ].
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Figure 10.19 History of superconductivity; transition temperatures are plotted vs. the year of
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scale, the boiling points of helium, hydrogen, and nitrogen are marked.
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Figure 10.20 Superconductivity transition temperature T c vs. year of discovery illustrating the
race between inorganic and organic superconductors. Source: After Williams et al. [7].

win, if the goal were to reach room temperature superconductivity. In the organic
vs. inorganic race shown in Figure 10.20, the organics seem to overtake soon.

However, no matter how one looks at it, the introduction of dimensionality
to the study of superconducting systems has led to significant advances. We are
quickly approaching the ability to design the materials properties based on these
“dimensionality” principles.

10.3 The Charge Density Wave

When metals are cooled to very low temperatures, we have seen that they may
undergo transitions to new phases that order through collective interactions.
Superconductivity is one example but it surely isn’t the only one. There are, for
example, interactions within our many-particle state that lead to excitations and
ordering of the charge density or spin density. At times these processes can com-
pete with superconductivity, and at times superconductivity can exist simultane-
ously with these excitations. So our next illustration is the charge density wave
(CDW).

10.3.1 The Charge Density Wave and Peierls

Recall that in our discussions of the Peierls transition, we treated it as a structural
phase transition wherein the atoms rearrange and simultaneously the electronic
structure of the system changes. The atomic rearrangement leads to new reflec-
tions in X-ray and neutron diffraction patterns. Recall also that a precursor of the
Peierls transition is the Kohn anomaly, which is phonon softening at the wavevec-
tor q, corresponding to two times the Fermi wavevector kF. The change of the
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electronic structure causes an MIT. The Peierls transition is typified in this 1D
behavior and occurs only if the Fermi surface is planar or at least contains paral-
lel sections (known as nesting). Finally, remember we considered a (hypothetical)
monatomic alkali chain and then applied this Peierls concept to conjugated poly-
mers by replacing the alkali atoms with CH radicals. Thus bond alternation was
explained as a Peierls transition. The π electron density along the chain appears
as a sinusoidal wave.

10.3.1.1 Modulation of the Electron and Mass Densities
The CDW is a collective ordering of the many-particle state with spatial mod-
ulation of the conduction electron density and an associated modulation of the
lattice atomic positions. As in the case of superconductivity, CDWs come about
due to an instability in the metallic Fermi surface that involves electron–phonon
coupling. And this leads to charge density fluctuations that look like

𝜌 = 𝜌0 cos(q ⋅ r + 𝜙) (10.70)

Another way to phrase this is that the CDW state is, again, electrons coupling
with the lattice. This coupling produces a charge density fluctuation quite similar
in functional form to that seen in the conjugated systems that we explained with
the Peierls transition.

Electron–phonon coupling is particularly favorable when the phonon modes
soften, such as at the Kohn anomaly; thus CDWs are frequently found in
low-dimensional systems. This coupling between the charge density and mass
density is the essential feature of the CDW, but, unfortunately, the term “charge
density wave” does not sufficiently stress this coupling. However, the term
“charge density – mass density wave” is simply too clumsy.

10.3.1.2 Starting with Polymers
In the case of conjugate polymers, the modulation of the π electron density
is rather trivial because there must be a higher electron density at the double
bonds. Conjugated polymers, however, are not ideal Peierls systems. In Peierls
systems, electron–phonon interactions are dominant, and in conjugated poly-
mers, electron–electron interactions are equally as important. To account for
this more complicated situation, the bond alternation in polymers is called a
bond order wave (BOW) rather than CDW .

Alkali metal chains and conjugated polymers are 1D systems with half-filled
bands: there is one electron per lattice site, and in a completely filled band, there
would be two electrons, one with spin-up and the other with spin-down. In a
half-filled band, the elementary cell doubles at the phase transition, and the Bril-
louin zone is reduced by a factor of 2. The Kohn anomaly occurs at the phonon
vector q = 2kF that is the end of the first Brillouin zone in the undistorted lat-
tice. The Peierls concept, however, is not restricted to half-filled bands. In the
hypothetical “polyfractiolene” we encountered band filling of 1/3, changing the
structure by tripling the unit cell. More complicated is the situation in KCP, where
the band filling is 5/6. Consequently, 2kF = 10/6a*, which can be transferred into
the first Brillouin zone by subtracting a reciprocal lattice vector a* so that we get
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the result q = 2/3a*. This fits quite well to the position where the Kohn anomaly
is observed by inelastic neutron scattering in this system.

10.3.1.3 A Gap Is Introduced
With the lattice distortion going as

un = u0 cos(qz + 𝜙) (10.71)

and q = 2kF or 𝜆c = π/kF, n is the atom index, and then an energy gap will open
up at ±kF as we saw in the case of phonons generally. However these distortions
are coupled to the electrons, and in the 1D case, the elastic energy cost to modu-
late the atomic positions is less than the energy gain in the conduction electrons.
Thus the CDW becomes the preferred ground state of the system at low tem-
peratures. At higher temperatures the energy gain of the conduction electrons
is reduced by thermal excitations across the gap, making the metallic state sta-
ble. A second-order phase transition with temperature exists between the CDW
state and the metallic state in such systems. This transition is exactly the Peierls
transition.

10.3.1.4 The Order Parameter
The CDW state is often described in terms of a complex order parameter given as

ψ = Δei𝜙 (10.72)

where Δ determines the size of the energy gap as well as the displacement of the
atomic positions u0 and 𝜙 is the phase lag between the CDW and the under-
lying lattice itself. We discussed order parameters earlier in Chapter 8 on lattice
order as representing the probability of finding some observable at some position
within the system. In this case variations in 𝜙 and Δ can occur due to collec-
tive excitations of the many-particle system known as phasons and amplitudons,
respectively. Clearly such excitations are quantized into their own quasiparticles.

10.3.1.5 Phase Dynamics, Pinning, Commensurability, and Solitons
One should be a little careful about reading too much into the single particle

state diagrams for dispersion. We didn’t give one here for CDWs, but we do for
superconductors above, and these can be misleading. There is an energy gap in
both cases, but neither case is a semiconductor as we might suggest using the
logic of our single particle arguments. This is because both have rigid, collective
charge transport modes. In the superconductors we used this as an argument
for reduced scattering generally. In CDWs something similar occurs. For CDW
systems, when a field is applied, the CDW can slide rigidly with respect to the
underlying lattice. Oscillation of the atoms locally produces a traveling potential
landscape. The electrons are coupled to and move with this traveling potential,
producing a current from the CDWs. This phase slip is the primary mechanism
for transport within the state.

Sliding without resistance of a CDW is only possible if the following two con-
ditions are fulfilled:

1. The crystal is perfect.
2. The CDW is incommensurate or the crystal is made of jellium.
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Jellium assumes a continuous distribution of the positive charges instead of
discrete atoms. Incommensurability means that the ratio between the wavevec-
tor and the reciprocal lattice vectors is an irrational number. In both cases the
CDW cannot register with the crystal lattice, and hence the energy is indepen-
dent of the phase of the CDW.8 A mechanical analogue of “registering” is the
cogwheel and the bicycle chain. In many physical systems registering also occurs
when higher harmonics match, but it does not when there is no rational ratio
between the periodicities. An example of incommensurability is the rotation of
the earth around its axis and the revolution around the sun. To compensate this
incommensurability, we have to add intercalary days in leap years.

The CDW in polyacetylene registers strongly. To move it, a very high barrier
must be overcome. This barrier corresponds to the cleavage of all double bonds.
If the wavelength of the CDW is three times the lattice constant or perhaps 3/5,
registering will be much less pronounced. If CDW and lattice are incommensu-
rate, no registering will be possible. Of course, since the rational numbers are
infinitely dense, the exact distinction between commensurate and incommen-
surate is rather artificial, but for practical purposes a CDW is incommensurate
when the attraction to the crystal lattice is smaller than the thermal energy or
other energy fluctuations.

Impurities, crystal boundaries, and crystal imperfections will pin the CDW. For
example, a CDW cannot slide over chain ends. Any other irregularity will also
prevent the CDW from sliding, because impurities prefer to remain either at the
crest or in the valleys of the CDW. The interactions between individual impuri-
ties with the CDW sum up to a pinning force, and the CDW will slide only in case
the force exerted by an applied electric field is larger than the pinning force. This
leads to a threshold field for CDW motion. Below threshold the CDW does not
slide; above threshold it will, however not without resistance. Moving the CDW
in the presence of impurities leads to finite resistivity. Figure 10.21 shows the tem-
perature dependency of the conductivity of TTF–TCNQ [36]. The conductivity
increases upon cooling as expected for a metal, but below 80 K the increase grows
abnormally large and probably is a precursor of sliding CDW conductivity.

At 53 K a transition to a pinned CDW occurs and the sample becomes insulat-
ing. In some samples an even greater conductivity increase just above 53 K has
been observed [37], and reports of this “giant conductivity” have had an enor-
mous impact on the scientific community.

To demonstrate the existence of a threshold field, we can examine TaS3 as an
example [38]. In TaS3 the Peierls transition to a pinned CDW occurs at 220 K. In
Figure 10.22 the electric field dependency of the conductivity at 130 K is shown.
The conductivity is normalized to the room temperature value.

Up to the threshold field of ET ∼ 0.3 V/cm, the conductivity is negligibly small.
At ET the conductivity rises abruptly and saturates at high field values that cor-
respond to the normal state conductivity. Saturation at normal state values is
plausible from the equations relevant for CDW conductivity, which are iden-
tical to the conductivity in the Drude model of free electrons when the sliding

8 Here the meaning of the word “register” is taken from color printing, where the pads have to
register to ensure correct superposition. Incommensurability was originally a theological term
implying that there is no common measure for the grace of God and human merits meaning that
one cannot be offset against the other.
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Figure 10.21 Temperature dependency of the conductivity of TTF–TCNQ. Source: After Cohen
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finite and saturates at values
expected for normal state
conductivity (∼𝜎RT). Source:
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velocity corresponds to the drift velocity. Another consequence of pinning is the
frequency dependency of the conductivity. Pinning makes it hard for a CDW to
slide, but still the CDW can oscillate fairly easily. This leads to low DC and high
AC conductivity.

Rice et al. [40] have predicted nonlinear charged excitations in pinned CDWs.
They obtained the following equation for the phase 𝜙 of the CDW:

𝜕
2
𝜙

𝜕t2 − c2
0
𝜕

2
𝜙

𝜕x2 + 𝜔
2
0

dV
d𝜙

= 0 (10.73)

where 𝜔0 is the oscillation frequency of the CDW (determined by far-infrared
measurements) and c0 is the phason velocity as derived in the Lee, Rice, and
Anderson [41] analysis of the A− mode in Figure 10.22. The quantity V in the last
term of Eq. (10.73) is the potential energy due to the registering of the CDW to the
lattice. Consequently V is a periodic function, and Eq. (10.73) is the sine-Gordon
equation mentioned in the general discussion on solitons. We know that the
sine-Gordon equation has solitonic solutions. A soliton in a CDW is a phase-slip
center, as depicted in Figure 10.23.
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Figure 10.23 Phase slip center (soliton) in a pinned CDW. (a) Spatial change in the phase 𝜙.
Note the similarity to the bond alternation parameter in polyacetylene in Figure 5.23.
(b) Charge density wave with local phase f .

It can be demonstrated that its charge amounts to ±2e, equivalent to that of
two electrons. (The integral over a harmonic wave is zero, of course, but at the
distortion the negative and positive parts of the wave differ in width, and inte-
grating then leads to ±2e.) The conductivity of a CDW system below threshold
is not exactly zero. It is believed that the residual conductivity is at least partially
due to solitons. Soliton conductivity in pinned CDWs is similar to creep phe-
nomena in metallurgy. Long before the shear forces are strong enough to allow
for sliding of crystal slabs along lattice planes, the crystal deforms by the motion
of dislocations.

If the charge density slides (above threshold), a very peculiar noise is generated
and superimposed to the DC current. A spectral analysis reveals that this noise
consists of a very narrow peak and its higher harmonics (narrow band noise).
As an example, see the noise spectrum of TaS3 in Figure 10.24. Again there is a
close analogy to shear deformation of metals. When some metals (for example, tin
or cadmium) are bent, they emit a characteristic acoustic noise (“Zinngeschrei,”
tin cry).

A classical single particle model [41] for the interpretation of narrow band
noise is the so-called “washboard model” (Figure 10.25). The CDW slides as a
rigid entity over rigidly fixed impurities. It corresponds to a ball rolling down
a wiggled slope (washboard). This simple model explains both the threshold
field and the dependence of the noise frequency on the CDW current as in
Figure 10.26.
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Figure 10.24 Noise
spectrum for sliding CDW
conduction in TaS3. The
narrow band noise is seen
as a pronounced peak that
shifts to higher frequencies
as the sliding velocity of the
CDW increases (along with
increasing bias voltage).
Source: After Grüner and
Zettl [39].

Figure 10.25 Classical washboard model to
demonstrate that noise frequency increases
with the sliding velocity.

10.3.2 Peierls and Coulomb Interactions: Spin Interactions

The CDW with wavevector q = 2kF is just one representative of a large variety
of electron-driven lattice distortions in 1D solids. In the phase diagram of the
Bechgaard salts, SDW are presented, and in some systems there is a CDW with
q= 4kF instead of q= 2kF. These interactions are predicted when the mechanisms
of coupling become more complicated and include more details.

10.3.2.1 4kF Charge Density Waves
A 4kF CDW can occur when the Coulomb interaction between the electrons
is large. To understand why, we turn to our friend from above: Hubbard [42].
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Figure 10.26 Washboard model of
sliding charge density wave. ET,
threshold field. The ball begins to
roll at threshold. The frequency of
the narrow band noise increases
with the velocity (which is
proportional to the current).
Source: After Grüner and Zettl [39].
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Figure 10.27 Creation of a Coulomb gap in a half-filled band due to electron–electron
interaction. (a) Without Coulomb interaction. (b) Coulomb interaction switched on. Source:
After Kagoshima et al. [43].

This model is one of the most simple ways to see how the interactions between
electrons can give rise to collective phenomena in solids such as metal–insulator
transitions, magnetic ordering, and in some cases superconductivity.

In the Hubbard model, if U is large, say, on the order of the bandwidth, all
electrons are localized. If the band is half-filled, there will be one electron on
each lattice site. An additional electron will require the energy U , because it will
have to be placed where there exists another electron already, and hence it will be
repelled. The repulsion creates a Coulomb gap of width U at the Fermi surface;
the system is not a metal but a Mott–Hubbard insulator. The Coulomb gap is
illustrated in Figure 10.27. The electronic band structure E = E(k) is plotted with
the filled part of the band indicated by a thick line. The Fermi energy is at point
A. An additional electron will not be found at A but at B, which is higher by the
Coulomb repulsion energy U .

Now to discuss the 4kF CDW , we take a look at a linear chain with one electron
per three atoms. The electrons will tend to be equally spaced. A lattice distortion
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(a)

a

3a
(b)

Figure 10.28 4kF charge density wave in a chain with one electron per three atoms and
strong Coulomb interaction. (a) Undistorted chain. (b) 4kF charge density wave. Source: After
Kagoshima et al. [43].

in which the atoms are grouped by three and brought closer to the electrons will
minimize the energy. In contrast to the Peierls distortion with q = 2kF, the dis-
tortion shown in Figure 10.28 occurs at q = 4kF. This can be easily explained: the
wavelength of the CDW is 𝜆= 3a, and the wavevector is q = 2π/3a. The band fill-
ing results in 𝛼 = 1/6 because a completely filled band would have two electrons
per site (spin-up and spin-down). In our case, however, there is only one electron
per three sites. In a linear chain the Fermi vector is proportional to the filling
factor kF = 𝛼π/a; hence in our case, kF = (1/6)(π/a), and consequently q = 4kF.
A more general way of achieving this result is to say that strong Coulomb inter-
action lifts the spin degeneracy of the electrons. The electron system decouples
into two subsystems with the states of one of the subsystems being energetically
so far away that they can be disregarded. A subsystem band with one electron per
atom is completely filled, not half-filled. All k vectors of the electronic states have
to be multiplied by two, and the CDW occurs at q = 4kF.

10.3.2.2 Spin Peierls Waves
The linear array of equidistant electrons in Figure 10.28b still has spin degrees
of freedom, and the 4kF CDW is not the ground state. The spins can order fer-
romagnetically (all parallel) or antiferromagnetically (up and down alternating).
The magnetically ordered spin chain is known as the Heisenberg spin chain. It
has collective excitations, the magnons. If the equidistant electron arrangement is
changed into a pair arrangement as indicated in Figure 10.29, the magnon energy
can be lowered in a way similar to the lowering of the electron energy in the Peierls
transition. The lattice adjusts to the paired electrons, the elementary cell is dou-
bled, and the lattice distortion is again found at q = 2kF. Because of the analogy
the transition within the 4kF CDW is called a spin Peierls (SP) transition.

10.3.2.3 Spin Density Waves
The SP state is different from the SDW, which is accompanied by no lattice dis-
tortion [44]. An SDW actually is a split CDW: it consists of a wave for spin-up
electrons and another one for spin-down electrons with a phase shift of 180∘
between the spin-up and the spin-down waves. The splitting is brought about by
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(a)

(b)

Figure 10.29 Spin Peierls transition in a 4kF charge density wave. The 4kF CDW leads to a
chain of equidistant electrons (Heisenberg spin chain) that can order magnetically. The
magnetic energy can then be lowered by the approach of the electrons in pairs.

Table 10.5 Various instabilities in the CDW family.

Acronym 2kF CDW 4kF CDW SDW SP

Full name 2kF charge
density wave

4kF charge
density wave

Spin density
wave

Spin Peierls
state

Wavevectors 2kF 4kF 2kF 2kF

Lattice distortion Yes Yes No Yes

Source: Partially after Alcacer [45].

electron–electron interactions. Because of the phase shift, the corresponding lat-
tice distortions interfere destructively, and there is no net distortion. Therefore,
an SDW cannot be detected by structural investigations (X-ray or neutron scat-
tering); however, local susceptibility measurements turn out to be very powerful
such as electron spin resonance (ESR) and nuclear magnetic resonance (NMR),
the latter because of the hyperfine interaction through which the electronic spins
relax the nuclear spins [45].

A summary of the various instabilities in the CDW family is given in Table 10.5.
At low temperatures these instabilities compete with each other and with super-
conductivity. Sometimes this competition is expressed in terms of “g-ology,”
using the electron scattering parameters g1 and g2 as axes of a coordinate system
and assigning the most divergent instabilities to the respective fields in the
g1–g2 plane. The parameter g1 is the amplitude for backward and g2 for forward
scattering. In a more complete diagram, g3 is used for Umklapp scattering. In
this diagram two types of superconductivity occur: the singlet superconductivity
(SS) and the triplet superconductivity (TS). SS is the well-known “conventional”
BCS superconductivity, where the spins of the electrons in a Cooper pair are
opposite so that the net spin is zero. In TS the spins are parallel, summing up
to a total spin S = 1, which can take three orientations relative to an external
field (+1, 0, and −1, hence triplet). In the phase diagram of the Bechgaard salt
superconductors, we noted that superconductivity is adjacent to SDW, and in
Figure 10.30 we find the superconducting neighbor of SDW to be TS rather
than SS. This observation has led to speculations that the superconductivity in
Bechgaard salts may be of the triplet type rather than singlet [23, 46].
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TS

SS

CDW

SDW

(CDW)

g1

g2

g1 = 2g2 + Ig3I

Figure 10.30 “g-Ology” of one-dimensional
instabilities. g1 is the amplitude for backward, g2 for
forward, and g3 for Umklapp scattering. TS, triplet
superconductivity; SS, singlet superconductivity;
SDW, spin density wave; and CDW, charge density
wave.

10.3.3 Phonon Dispersion: Phase and Amplitude in CDWs

Figure 10.31 shows the phonon dispersion relation of a system susceptible to the
Peierls transition. In Figure 10.31a we see the dispersion relation far above the
Peierls transition. In Figure 10.31b the Kohn anomaly develops at q = 2kF, as
demonstrated in the example of KCP. In Figure 10.31c the phonons at the Kohn
anomaly become completely soft, and the lattice rearranges. In this rearrange-
ment 2kF turned into a new reciprocal lattice point, and the first Brillouin zone
is now limited by ±kF. The parts outside the first Brillouin zone are indicated by
dotted lines in Figure 10.31d. These outside parts can be transferred into the first
Brillouin zone by subtraction of the reciprocal lattice vector (±kF). The reduced
zone scheme is shown in Figure 10.31e.

Here there are two phonons with energy 𝜔 = 0 at wavevector k = 0. This
contradicts one of the fundamental theorems of lattice dynamics. Since “nicht
sein kann, was nicht sein darf ,”9 the lattice lifts this degeneracy and pushes
one phonon branch (A+) upward, which in the terminology of lattice dynamics
is called an optical phonon branch (there are many optical phonon branches
allowed), whereas A− remains the acoustic phonon branch. There is only one
acoustic phonon branch permitted (see Chapter 5 on phonons). From the
point of view of lattice dynamics, this is not unusual. Rearrangements of the
phonon branches occur at many structural phase transitions. But in the world of
CDWs, we call A− the phase mode or phasons, and A+ the amplitude mode or
amplitudons [41]. Given our discussion of these two names and their origins in

9 From a favorite poem Die unmögliche Tatsache by Christian Morgenstern (1871–1914):
Palmström, etwas schon an Jahren,
wird an einer Straßenbeuge
von einem Kraftfahrzeuge
Überfahren.
… (Fahrverbot) …
Und er kommt zu dem Ergebnis:
“Nur ein Traum war das Erlebnis.
Weil,” so schließt er messerscharf,
“nicht sein kann, was nicht sein darf.”
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Figure 10.31 Phonon dispersion relation in a crystal with Peierls transition. (a) Undistorted
phonon dispersion relation at high temperature. (b) Development of Kohn anomaly.
(c) Phonons at Kohn anomaly become completely soft. (d) Lattice rearrangement. Dotted parts
of the dispersion relation lie outside the first Brillouin zone of the new lattice. (e) Phonon
dispersion relation in the reduced zone scheme. (f ) Lifting of the q = 0 degeneracy and
development of an amplitude mode (A−) and a phase mode (A+) in CDW terminology.

the order parameter above, it shouldn’t be hard to link the two concepts together.
An inspection of the CDW reveals that the amplitude mode corresponds to a
modulation of the CDW amplitude and the phase mode to a phase modulation.

Of course, now, with our more detailed look into these excitations, the idea of a
phason with𝜔= 0 at q = 0 turns out to be quite important. The term q = 0 corre-
sponds to that sliding of the CDW as a whole we were claiming above. Moreover,
this motion needs no energy! This is the renowned Peierls–Fröhlich mechanism
of superconductivity. In a real crystal the CDW is always associated with lattice
imperfections, but a CDW in a perfect crystal would be a Peierls–Fröhlich super-
conductor.



452 10 Correlation and Coupling

10.3.4 More on Peierls–Fröhlich Mechanisms

Figure 10.31b shows the electronic band of a Peierls system. For comparison the
band structure of metal with half-filled band is shown in Figure 10.31a. In the
Peierls system there is a bandgap of widthΔ at the Fermi wavevector kF. Accord-
ing to the Peierls–Fröhlich mechanism, the CDW moves through the crystal lat-
tice. From Section 10.3.3 we know that in a perfect crystal this sliding motion does
not require energy (for the phason mode 𝜔 = 0 at q = 0). Strictly speaking, this
is only true in the jellium approximation, where the positive ions do not form
a discrete lattice but are continuously spread over the solid – or for an incom-
mensurate CDW where kF is not a rational fraction of a reciprocal lattice vector.
The flow without resistance stems from the fact that the energy is independent
from the position (phase) of the CDW as well as from the absence of inelastic
scattering due to the Peierls gap. CDWs in real crystals, however, associate with
impurities. In Figure 10.31b the band structure of the system with a sliding CDW
is shown. The CDW moves with the sliding velocity 𝜈s, leading to a displacement
of the planes of the Fermi surface by q:

q = m∗vs∕ℏ (10.74)

where m* is the effective mass of the electrons and the motion of the CDW cor-
responds to the current:

ICDW = nevs (10.75)

where n is the number of electrons in the sample. The sliding velocity 𝜈s corre-
sponds to the drift velocity in the usual derivation of the electric conductivity.
The existence of a gap does not prevent conductivity, provided the electric field
can force the gap to become asymmetric (at different positions in +k and −k
directions). In this case the gap excludes loss due to inelastic scattering processes,
and hence the current flows without resistance. In an insulator the electric field
cannot push the gap into asymmetric positions, because the gap originates from
structural features unable to slide along the crystal (Figure 10.32).

E E E

Ef

k k k

Ef
ΔE ΔE

q

–kf–kf–kf kfkf
kf

kfVs

π/a–π/a–π/a
= –π/2a = –π/2a = π/2a

–π/a π/aπ/a
= π/2a

(a) (b) (c)

Figure 10.32 (a) Band structure of metal, half filled, no gap. (b) Electron band with Peierls gap
Δ a Fermi wavevector kF. (c) Displacement of the electron system with uniform velocity 𝜈s and
shift of Fermi vector by q, leading to asymmetric gap positions and a positive sum of electron
k vectors.
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10.3.5 Spin Density Waves and the Quantized Hall Effect

The symmetry of TM2X Bechgaard salts is triclinic, but most physical features can
be better explained by assuming orthorhombic symmetry with axes a, b, and c.
The direction of highest conductivity is along the stacking axis that we assign to
the a direction. The crystal is not only anisotropic with respect to the a direction
and bc plane; the bc plane is also anisotropic itself. For (TMTSF)2X compounds
the ratio of the bandwidths is ta:tb:tc = 100 : 10 : 0.3; ta ∼ 0.2 eV (the “t’s” are
the transfer integrals, and the bandwidth is W = 4t). Because of the finite values
of tb and tc, the Fermi surface is not planar but warped. There is still sufficient
nesting so that (TMTSF)2PF6 is in the CDW state at ambient pressure and low
temperatures. The application of the modest pressure of 12 kbar will increase tb
and destroy the nesting condition. Consequently, the CDW is suppressed, and
the sample becomes superconducting.

Applying a sufficiently high magnetic field (above the critical field) will sup-
press superconductivity, and the sample should behave like a normal metal. But
if the field is applied in c direction (the direction of lowest conductivity), the CDW
will be reactivated [47]. This means the magnetic field restores the nesting condi-
tion! The effect is called a field-induced spin density wave (FISDW). An amazing
property of the FISDW state is a stepwise field dependency of the Hall voltage
[35], very similar to what is observed in the von Klitzing effect (quantum Hall
effect, QHE) [47]. Examples for (TMTSF)2ClO4 and (TMTSF)2PF6 are shown in
Figure 10.33.

In ordinary SDW, nesting occurs for the wavevector q = 2kF. In high magnetic
fields the electronic DOS is modified by the Landau quantization. For example,

Figure 10.33 Quantized Hall
effect in the field-induced
spin density wave systems.
(a) (TMTSF)2ClO4: T = 0.5 K,
ambient pressure.
(b) (TMTSF)2PF6: T = 0.1 K,
p∼ 8 kbar [35, 46].
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electrons move in closed orbitals of quantized energy, and the DOS between the
Landau levels is zero. Interference between Landau levels and the Fermi surface
leads to the dHvA and SdH oscillations discussed in the context of “fermiology.”
Because of the Landau quantization, the wavevector q of the SDW has to be mod-
ified to

qFISDW = 2kF + NeHb∕h (10.76)

where N is an integer, H is the applied field, and b is the lattice spacing in b direc-
tion. For qFISDW there are new nesting conditions that depend on the magnetic
field. A direct consequence of the field-dependent q vector is the quantization
of the Hall resistance at 𝜌H = h/2Ne2. Because nesting is a fairly crude geomet-
rical overlap, the steps in the FICDW-QHE are by far less sharp than in the von
Klitzing effect.

10.4 Plasmons

Plasmons are typically discussed in sections on the optical properties of solids.
However, they too are a collective oscillation state of the conduction electrons
and are therefore interesting as interaction physics. Indeed, there is some evi-
dence that they may play an important role in the theory of type II superconduc-
tors: ceramics that are composed of 2D sheets of conductor [48].

10.4.1 The Drude Model and the Dielectric Function

Plasmons are quantized, as are all correlated phenomena. However, it is rather
straightforward to see how volume plasmons might arise using semiclassical
approaches and the Drude model we have already introduced. We start with
free electrons interpenetrating a set of static ion cores in a lattice: a unique
sort of plasma. Notice that the cores are static. As in the Drude model, they
are ignored except as a smeared-out restoring force and perhaps the source of
damping through scattering. Therefore coupling to phonons will play no role in
constructing our plasmon.

Following the Drude model as previously defined, there is a characteristic time
for scattering, 𝜏 , and a characteristic frequency of collision, 𝛾 = 1/𝜏 . (For sys-
tems that approximate a free electron gas, these numbers are roughly 10−14 and
100 THz, respectively.) The equation of motion of a given electron in this gas of
electrons, when it is exposed to an electric field, is classically

mẍ +m𝛾 ẋ = −eE (10.77)

So here we notice a subtlety, the E field that is applied, is seen directly by the
electron. But the electron is embedded in a sea of other electrons along with
an ionic background. As usual Drude-like models ignore this as an averaging
of effects generally. But we will return to it in Chapter 11. For now lets move
forward like this and assume that the applied field has a harmonic character:
E(t) = E0e−i𝜔t . This is handy because such an assumption can be used to gener-
ate any form of driving force through Fourier’s theorem. If you remember your
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basic mechanics, this yields solutions that look like x(t) = x0e−i𝜔t where x0 is
complex. Applying boundary conditions, substituting, and doing a little algebra,

x(t) = e
m(𝜔2 + i𝛾𝜔)

E(t) (10.78)

This is the familiar-driven harmonic oscillator with damping. Now if we set up
our coordinates such that P = − nex, we get

P = −ne2

m(𝜔2 + i𝛾𝜔)
E (10.79)

And, if you remember your first-year electrodynamics,

D = 𝜀0

(

1 −
𝜔

2
p

𝜔2 + i𝛾𝜔

)

E (10.80)

But an important definition has slipped in there:

𝜔
2
p =

ne2

𝜀0m
(10.81)

This is the plasma frequency of the free electron gas. Curiously this allows us
to write a dielectric function for the free electron gas as well:

𝜀(𝜔) = 1 −
𝜔

2
p

𝜔2 + i𝛾𝜔
(10.82)

Now you can see why the topic is typically discussed in optical properties
instead of collective behavior.

10.4.2 The Significance of the Plasma Frequency

What is so significant about the plasma frequency? To understand that, recall that
from Maxwell’s equations for the propagation of a wave in the media, we get

∇ × ∇ × E = −𝜇0
𝜕

2D
𝜕t2 (10.83)

This is with no driving force applied. And this transforms to

K (K ⋅E)−K 𝟐E =−𝜀(K , 𝜔)𝜔
2

c2 E (10.84)

in the Fourier domain (you may have to remind yourself with Griffiths [39]). We
notice here that 𝜀(K , 𝜔) is presented as a Fourier component; it is not necessarily
local. In the case of transverse waves, K ⋅E = 0, and

K 𝟐 = 𝜀(K , 𝜔)𝜔
2

c2 (10.85)

In the case of longitudinal waves, this implies 𝜀(K , 𝜔) = 0. Thus, longitudinal
collective oscillations can occur only at the poles of 𝜀. Indeed we might ask what
happens at 𝜔p? Well, according to our equation for the dielectric function of the
gas, in the small damping limit, 𝜀(𝜔p) = 0 at K = 0. The excitation must corre-
spond directly to a collective, longitudinal oscillation mode. And D= 𝜀0E+P = 0
and E = −P/𝜀o is a pure depolarization field.
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Figure 10.34 A classical interpretation of the origins of plasmon oscillations.

To better interpret, or picture, what these oscillations that can propagate
through the solid with a frequency of 𝜔p are, we turn to our simple diagram in
Figure 10.34. Here we simply image that the positive and negative charges in the
Drude model fill the volume of the solid uniformly and the positive (ionic cores)
can be separated uniformly from the electrons. We ask what is the restoring
force and what are the dynamics of this electron fluid as it goes crashing back
into the positive volume? This is actually a widely assigned mechanics problem
and not too hard to solve. If we displace the electrons by u, then the charge on
the top and bottom slabs will be 𝜎 = ±neu. This gives us a field of E = neu/𝜀o.
The equation of motion looks like

nmü = −neE (10.86)
nmü = −n2e2u∕𝜀0 (10.87)
ü + 𝜔2

pu = 0 (10.88)

So 𝜔p is the natural free oscillation frequency of such a system. We note that
we have treated all electrons as though they are moving in phase with each other.
This is a K = 0 long wavelength limit of motion. The collective oscillations are
known as plasmons (volume plasmons to be precise).

We will return to plasmons in the optical properties section of our Chapter 13.
However, it is interesting to note that the longitudinal properties of the volume
plasmon prevent it from coupling directly to transverse electromagnetic waves.
It can only be stimulated by impact with charged particles and indeed is widely
used in electron energy loss spectroscopy as a characterization tool. Further, the
decay of the volume plasmon occurs only through energy transfer to individual
electrons. This is known as Landau damping.
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10.5 Composite Particles and Quasiparticles:
A Summary

We began our study of electronic properties using band pictures that enumerated
single particle states of electrons in the solid. As we began to look more closely,
interactions between electrons themselves, electrons and lattice vibrations, and
(as we will see) electrons and the full electromagnetic field were necessary to
explain the phenomena observed in solid-state systems. The problem is do we
explain these as modified single particle states? They really aren’t this; they are
collective states where we have used some illustrations to help us understand the
dominant physics. It was really Landau who formulated a rescue to this conun-
drum. Landau’s basic idea was as follows: for a complicated system of strongly
interacting particles like electrons, we could reduce its description into a picture
of weakly interacting composite particles. These particles have their origins in
the collective behavior or correlation of a background field. This idea is widely
accepted by physicists today, and we have an “-on” (magnon, plasmon, polaron,
etc.) for practically everything. In actual fact the approach is not really that dif-
ferent from modern quantum field theory in elementary particle physics.

We have loosely called these “-ons” quasiparticles because they represent a
hybrid of sorts. They are not an individual particle as we think of one. They are
not elementary or even that well localized. However they do carry momentum
and have properties like spin and obey particle statistics. The examples given in
this section have tried to help the reader understand how such composite struc-
tures come about and how we typically treat them in theories of the solid state.
But this is by no means exhaustive, and the astute reader will by now have real-
ized that delving into the specifics of any particular collective behavior becomes
very specialized very quickly.

Exploring Concepts

1 The Hubbard Model: There are many useful refinements to the Hubbard
model, and the math is really rather simple. By looking through the literature:

(a) Determine how the model would change when a magnetic field is intro-
duced.

(b) Determine how the model would change with a chemical potential added.
(c) What systems did the Hubbard model originally address and why?

2 MgB2: The MgB2 honeycomb lattice is constructed from partially filled 𝜎

bonds.
(a) From our argument above, how many superconducting gaps would you

expect in MgB2? Read through the references and see if your guess is
correct.
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(b) Draw out this structure as carefully as possible. (It can also be found in the
references.) In the simple spring picture we presented in Chapter 3, what
does this partial filling do to the effective spring constants? How would
this change the phonon dispersion? Why and how might this change the
electron–phonon coupling?

3 Phase Diagrams: Our phase diagram above isn’t quite complete. Look
through the literature at the different (TM)2X compounds, and see if you can
place them on the diagram. Now consider a compound using an anion that
isn’t in your list. Can you make a guess as to where it might appear?

4 Nanotubes and Superconductivity : Our argument regarding A15 compounds
relies on the existence of van Hove structures in the bands together with dop-
ing such that the Fermi level approaches one such peak. Another material that
would certainly present the same opportunity is the carbon nanotube. But
these materials also present a very different set of symmetries and potential
electron–phonon coupling mechanisms.

(a) Would you expect for superconductivity to be found in single-walled car-
bon nanotubes? If so, describe the dominant model for the behavior.

(b) What about multiwalled nanotubes? Would the presence of a second wall
disturb the cooperative state? Why?

(c) Find sources in literature that back up these notions. Notice that the claims
of superconductivity at higher temperatures are for very small diameter
nanotubes. Why would this be?

5 Peierls–Fröhlich Mechanism: There are now several exactly solved models of
the Peierls–Fröhlich mechanism in one dimension. A quick literature search
will discover that a central feature is to understand how such a system will
behave with disorder. Consider now a single defect within a 1D conjugated
system. What effect will this have on the formation of domain walls? Describe
the effects as the number of these defects increase.
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Intermission

The solid is composed of a lattice of atoms with their electrons interacting
through the electromagnetic force. We have reduced the problem of explaining
phenomena in solids into those aspects that are related to the motion of the
lattice and those related to the motion of the independent electrons. From this
we can explain thermal transport to band structure and some simple electronic
transport, as you have seen. But, when correlation and coupling is added to
our picture, more exotic behaviors such as superconductivity emerge. Thus,
we have a perspective for our essentials: (lattice+ electrons+ correlation). This
approximation to the actual physics of the solid’s many-body wavefunction is
pretty good and very useful. But it can look a little like a hodgepodge of ideas
thrown together.

Nevertheless this adiabatic approximate approach to the study of solids is
important for building simple expectations from very complex phenomena.
Sometimes the local/simple explanation is needed to really “see” the movie in
your head, unlike our professor below. The answer to the mirror question is
quite simple, in fact, but only presents itself as so when you actually play with
the mirror.

While trying to explain why a mirror inverts left and right but not top and
bottom, the professor went into reciprocal space. Solid-state physicists differ
from other people by their familiarity with reciprocal space.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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This approach of playing with the combined, independent aspects of (lat-
tice+ electrons+ correlation) can be carried a bit further to include the solid’s
interaction with electromagnetic fields. We end our journey with an introduction
to optical and magnetic response in the solid state. Using the mathematical and
conceptual tools developed so far, we can build some useful models of spins and
magnets, electric dipoles and dielectrics, and curious correlations and coupling
in our systems. We are looking only for the basics here: the essentials. Indeed,
these topics merit whole texts to themselves. Finally our theme of dimensionality
will continue to play a strong role in phenomena, even here.

Now on with the show…
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Magnetic Interactions
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Split a magnet and you get another magnet. Touch some metals with a magnet
and they too become magnets. Who didn’t play with magnets as a child? But why
do they act the way they do? What is the mechanism? Understanding this will
require that we accept an astonishing coordination of magnetic moments of the
atomic scale. Thus, magnetism is inherently a quantum mechanical feature of
materials. Yes, that is right. Classically magnets do not exist! It is a good thing
nature is unaware of this limitation.

The Basics
1. Atoms have their own internal magnetic fields. They behave like little

dynamos with the field sourced from “tiny loops of current.” The atomic-scale
fields look mostly like dipoles, and so we can assign each atomic unit a dipole
moment mLS.

2. Atoms or molecules with these magnetic dipole moments condense into
solids, and their moments can be aligned collectively. Locally mLS →m(r) and

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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globally m(r)→M. Thus, the solid takes on a “north–south”-poled magnetic
field of a bar magnet.

3. Alignment can happen when a B field is applied, and at times this induced
state can be frozen in even when the field is removed. Other times the solid
relaxes back to a nonmagnetic state. Frozen-in magnetism means atoms are
not isolated magnetically.

4. Magnetic moment interaction is not static. The lattice of moments can interact
with other lattice denizens, such as phonons. This allows for phenomena such
as spin waves (magnons) to form.

5. Finally, the specific bonding and fields of the surrounding crystal can mediate
magnetic moment interactions. This gives rise to more exotic mecha-
nisms of magnetic domain formation and supports large frozen-in fields.
Superexchange and Ruderman–Kittel–Kasuya–Yosida (RKKY) magnets fall
into this category.
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11.1 Magnetism of the Atom

The magnetic moment of an atom appears to arise from the “current-like” com-
ponents of angular momentum (L) and spin (S) and combined (J).1 As shown
in Figure 11.1, these components are responsible for all paramagnetic response
of a material to an applied B field. A third “current-like” component that comes
from induced changes in the L due to an applied B field gives rise to diamagnetic
response in the magnetic moment:

mspin = −(ge𝜇B∕ℏ)s (11.1a)

morbital = −(𝜇B∕ℏ)I (11.1b)

ge (g) is the Landé g factor and 𝜇B the familiar Bohr magneton.
Atoms can have multiple electrons with different orbital angular momentum,

depending on the energy state of the orbital. Spins can project in different direc-
tions as can the angular momentum vectors. For this we apply Hund’s rules [1]:

1. The total spin S of a system is given by the vector sum that yields the largest
possible value of the magnitude of spin angular momentum (ℏS) that is con-
sistent with the Pauli principle: S =

∑
i si. Another way to say this is atoms in

their ground states tend to have as many unpaired electrons as is possible. This
is seen in the simple example of Figure 11.2.

2. The total angular momentum L is also given by the vector sum that maximizes
the orbital angular momentum (ℏL) that is consistent with Pauli and with rule
#1: L =

∑
i li. Again, an easier way to say this might be that for a given multi-

plicity or spin configuration among orbitals, the term with the largest value of
L is the lowest in energy.

Figure 11.1 For a free atom
or ion, dipole-like magnetic
fields are generated by the
spins of electrons, the spin
of the nucleus, and the
orbital angular momentum
of the electrons. Each part
has its own specific
magnetic dipole moment.

Sz
2

Sz
1

Sz
nuclear Sz

3 Area a
mL = Ia
= eva

1 Caution: The electron is visualized as spinning on an axis, but the quantum of spin is an internal
degree of freedom that cannot really be described this way. Why? Well choose any axis against
which to measure the electron spin. You will find values of up/down spin no matter what. The only
time the electron seems to choose a specific axis direction is when something else, like a
measurement, a magnetic field, or the m of the system, is placed in the background. But “seeing”
spinning balls is pretty useful in playing the movie in our head.
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This one is also quite easy to understand. Essentially it claims that if the
electrons are all orbiting in the same direction (which means they all add up to
give the atom a large total angular momentum), then they will meet each other
less often than if they orbited in opposite directions to each other. In this way
their total coulomb repulsion is less (on average) when L is large, and so the
same direction state has a lower energy. It is therefore preferred by the atom.
This is known as an orbit–orbit interaction. An example is given in Figure 11.3.

3. Finally, the angular momentum and spin momentum L and S, which result
from the applications of rules #1 and #2, combine to give the total angular
momentum J of the atomic system. J = L+ S for shells less than half-filled.
J= L+ S half-filled or more. This is called spin–orbit coupling. Again this isn’t
really so hard to understand:

m = mspin +morbit = −(ge𝜇B J)∕ℏ = −𝜇B(2S + L)∕ℏ (11.2)

in terms of the magnetic moments. Note that these are vector sums: up vs.
down matters here. Also we have written this in terms of the Landé factor:

ge = [1 + J(J + 1) + S(S + 1)]∕2J(J + 1) (11.3)

This factor comes about due to electron–electron shielding in specific orbital
geometries.

Nitrogen:
(Z = 7) 1s2 2s2 2p3

Oxygen:
(Z = 8) 1s2 2s2 2p4

1s 2s 2p

1s 2s 2p

Figure 11.2 All of the orbital sublevels of the 2p level are
filled with unpaired electrons as in nitrogen before they
are allowed to pair up as in oxygen. This occurs simply
because the paired state allows the electrons to
approach each other more closely and thus it has a
higher energy. This is a spin–spin interaction.

–3 –2 –1 0 1 2 3

mL

An atom with 4f10 outer shell
This means 10 electrons in the n = 4 l = 3 subshell (4f)

Backward

Figure 11.3 The electrons will fill the subshell so as to make the L largest. Here we use the
example of an atom with an outer shell of 4f10. Using spectroscopic notation this means 10
electrons are in the outer 4f shell. Recall that we number the shells as s = 0, p = 1, d = 2, f = 3:
so this is the l = 3 orbitals. ml is the magnetic moment.
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4. We should add a fourth subrule: avoid details that might obscure the
larger points while simultaneously making you look foolish. For example,
mnucleus = gI𝜇NI/ℏ (I = nuclear angular momentum, 𝜇N = nuclear magneton,
and gI = nuclear g factor). Nuclear spin ordering tends to be rather irrelevant
for temperatures above 1 K or so; thus we ignore it. It is surprising how very
useful this fourth rule can be.
m changes when atoms become solids.
In isolated atoms it is clear that the partially filled outer shells (both their spin
and their orbit) contribute to the magnetic moment m. Filled shells do not con-
tribute to the magnetic moment of the atom, although they certainly will con-
tribute to the diamagnetic response through Larmor diamagnetism as we shall
see. However, when the isolated atoms (with a finite m) are condensed into a
solid, the proximity of other atoms can effect the spin and angular momentum
states of their outer shell electrons. Specifically, the local electric and magnetic
fields within the crystal (the crystal field) will readjust the potential energy
environment around lattice points, and thus the energy states of the outer
shell electrons, in such a way as to modify orbits and spins. In some cases,
such as in bonding, the m of the isolated atom is entirely quenched.2 But in
other cases, only the orbital part is quenched, and the spin part survives intact
or only partially modified.

The simple rules for this modification of atomic m (mLS) are as follows:

1. For free atoms or ions with partially filled s or p shells: m comes solely from
the electrons in these unfilled shells. In the solid, these magnetic moments are
all completely quenched. There are a few interesting exceptions, but they are
rare, and generally, the orbital and spin parts of m in the free atom are gone.

2. For free atoms and ions with partially filled d-shell electrons, f-shell electrons,
etc. and for the transition metals, rare earths, and so on, the story can be much
more complicated. For a particular atom, we can say generally that the d and f
electrons will frequently find themselves closer to the nucleus or ionic core and
are rather well shielded by orbitals with more spatial extent. Thus the degree
of their modification is small and can be expressed by a “quality factor” known
as the effective Bohr magneton “p”:

p = g[J(J + 1)]1∕2 (11.4)

J here is the total angular momentum quantum number of the free atom, and
g is the Landé factor.

Experimentally, a material placed within a magnetic field will respond to the
field, rearranging atomic spins and orbits, such that its collective response field
adds or subtracts from the original field. In linear response regimes we might
write something like

M = 𝜒B (11.5a)

M = 𝜒 ′H (11.5b)

2 It is probably more correct to say that the J’s that make up m are no longer good quantum
numbers for this molecular system.
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M here is the magnetic moment of the whole solid in question, and it is this M
that goes into the familiar E&M expressions such as H = (1/𝜇0)(B −M). B is the
total field (or flux density as some call it) and H is the auxiliary field. The 𝜒 ’s
are the susceptibilities, and they are where the materials physics is to be found,
including crystal field effects.

11.2 The Crystal Field

The features of what has become known as “crystal field theory” can be illus-
trated with an example. Here we start with an ionic species that has a partially
filled outer 3d shell. So this is a transition metal ion in a crystal. Regardless of the
crystal structure we might try to fit this ion into, we have an interesting problem:
it has lobes in its wavefunction that have specific directions and symmetries. The
crystal that we might try to place it in also has a specific symmetry depending on
where the other bonding atoms or ions are located. These two symmetries may
not be so well coordinated.

An example of the above might be Cr3+, which can form crystals with both octa-
hedral and tetrahedral symmetries (depending on the compound). Figure 11.4
shows the 3d orbitals laid out in the octahedral lattice unit cell.
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y y
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3dx2 – y2

3dz2
3dxy

3dxz 3dyz

n = 3, I = 2, mI = –2, –1,0,1,2 Fitting the octahedral symmetry
with the 3d orbitals

Figure 11.4 There are five possible d orbitals of a transition metal 3d ion as seen here.
However, these orbitals can only be fit inside the octahedra of the lattice unit cell in specific
ways. The system is ionic, so when the lobes of the orbitals align with the ions situated on the
vertices of the octahedral, the energy of that orbital is shifted with respect to unaligned
orbitals.
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Free ion

Spherical
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Octahedral
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3/5 Δo

2/5 Δo

Δo

dx2–y2, dz2

dyz, dxy, dxz

Figure 11.5 Energy level splitting (crystal field splitting) due to mismatches in the
coordination between orbital symmetry and crystal symmetry. This is shown for a 3d shell in
an octahedral site, but the reader should try to work out the tetrahedral case.

For an octahedrally coordinated site, there are six nearest neighbor anions as
seen in Figure 11.4. Notice that the orbitals of the 3d transition metal project out
into space but are well defined with respect to each other. That is, dx2 – dy2 and
dz2 (also known as the eg orbitals where the e stands for doubly degenerate) will
point in the direction of anions when the t2g states (meaning the triple degener-
ate orbitals) – dxz, dxy, dyz – will point into the voids between anions. Notice that
the energy levels of the two degenerate eg orbitals are increased due to interac-
tions with the anions. So the two eg orbitals will still be degenerated but higher in
energy than the t2g orbitals. The t2g orbitals also remain degenerate. They too are
shifted in energy from the free ion case, just not as much. This situation is seen
in Figure 11.5.

In Figure 11.5 the “aligned” and “anti-aligned” orbitals are placed into equal
energy groupings. For the fivefold degenerate 3d orbitals, we have a splitting of
Δ0 between the two groups. These new levels are referred to as Stark levels.

The completely degenerate spherically symmetric level would exist if we simply
shifted the ion’s energy by some mean field. Relative to this level, the eg’s increase
in energy by 3/5Δ0. However, the t2g’s drop in energy by 2/5Δ0. There can also
be further splittings due to next nearest neighbors, and obviously different crys-
tal structures, trigonal, tetragonal, etc. give different values of Δ and different
symmetries.

But why this configuration? Couldn’t we simply choose a configuration in which
the orbitals are slightly misaligned with all anions? The answer is that this will
likely not occur in nature. The ion seeks to configure itself, orbital occupation and
direction, such that its energy in that particular site is the lowest. This configura-
tional energy is referred to as the crystal field stabilization energy (CFSE), and it
depends strongly on the occupation of the split states and the size of the splitting.
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11.3 Magnetism in Condensed Systems

From classical E&M, the fields from differential elements of volume carrying
a specific m are added together as vectors (the vector integral’s value at point
P). The approach is to treat the sum of little m’s as a big M, a dipole field. This
is justified by looking at a multipole expansion of the field of a “magnetized”
object. Higher-order magnetic poles decay rapidly with distance, and there
are no monopole terms. So everything can be thought of in terms of dipoles
(Figure 11.6).

The nature of that m or M can be quite different from material to material. That
is, the response of materials to an applied field can range from opposing that field
to adding to it. Figure 11.7 gives an example of two possible responses, each of
which is frequently seen in the lab.

So how do materials vary so much in the magnetic response? The answer
lies with the exact mechanism of spin and orbital alignment that is responsible
for the magnetic response to start with. The subtleties discussed above actually
make more of a difference in the final field than you might think. Let’s see some
examples.

11.3.1 Paramagnetism

Imagine a box full of spins, but there aren’t very many (see Figure 11.8). Now if
this box were full enough or it was small enough, such that the spins were really
close, then there would be a torque between the spins that went like 𝝉 = m × B
where B is the field of the nearest other spins at the site of m. But in this instance,
our box is large, and the density of spins is small: the distance between any two
spins is really rather large.

M(r ′)d3r ′ = small volume of dipolar
element that integrates to give M. So
we get:

This is the result of superimposing the
dipolar magnetic fields of a large
number of these differential elements

M = Mk
r ′

r

r–r′
d3r ′

d3r ′

B(r) =
μ0

4π
3M(r ′)•(r – r′)

μ0M(r ′)δ(r – r ′)

M(r ′)

|r – r ′|5 |r – r ′|3
(r – r ′) –

+
2

3
.

y

x

z

P

Figure 11.6 A schematic layout of how to compute the B field when the source is a bunch of
little dipolar fields in a volume of d3r′. The integral sums all of these contributions vectorially
at P.
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Figure 11.7 The response of a material (M) to an applied field (H) can have a memory or not as
seen here. The small arrows are marking the direction of magnetic field increase or decrease.
(a) No residual field and (b) residual field.

B = 0 B > 0 B >> kBT/gμJ

Figure 11.8 The classic paramagnetic model: the spins cannot interact between themselves,
only with the externally applied field and with the heat bath. Notice here we have allowed spin
to take on more than just an up or down spin projection.

If an external magnetic field is applied across our box, it is clear that the spins
within the box will align with that field. The internal energy of the system will look
like U =−m ⋅ B for each of the m’s. Remember, here the B is from the outside. Of
course we must keep in mind that this whole thing will sit in some heat bath, and
so thermal agitations act upon the spins to misalign them. This energy is ∼kBT ,
and for the spins to align, it must be less than the alignment energy from above,
g𝜇JB.

This is the basic model for a paramagnetic response. That means a magnetic
response in materials where the localized magnetic moments are present but
there is no macroscopic magnetization (M) in zero field: H= 0. Notice that when
we increase the applied field, M increases, but when we decrease the field, M goes
away completely due to the thermal energy as shown in Figure 11.7a.

The role thermal energy plays in the total magnetization of a paramagnet is
illustrated in Figure 11.8. Spins do not tend to align completely unless applied
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fields are very large. When the “aligning field” is removed, thermal agitation to
the individual spins will eventually destroy any residual magnetism in the system.
In other words, the field generated by the spins themselves is not enough to keep
them all aligned together.

But surely this must all depend on the temperature of the spin system. Yes.
Below a specific temperature, paramagnets can exhibit permanence if interac-
tions are large enough. This temperature is referred to as the Curie temperature,
and the paramagnet that allows for such a limited inter-spin interaction is known
as a Curie paramagnet (a paramagnet with a Curie point). It is typically associ-
ated with a thermodynamic phase transitions for spin systems and is sensitive to
the density of spins, order and dimension of the system, and the magnitude of the
spins, m. So it follows the thermodynamic laws of phase transitions, scaling, and
critical phenomena as expected. Indeed, placing spins on a lattice and tweaking
interaction has led to numerous useful models of spin waves, spin transport, etc.

11.3.1.1 Curie Paramagnets
Curie paramagnetism is based upon an ensemble of single, localized electron
spins in a magnetic field applied along some axis “z.” Thus the |↑⟩ and |↓⟩ states
are split in energy by ≈2𝜇BB.

Boltzmann statistics determines the population of the |↑⟩ state relative to the
|↓⟩ state within the ensemble, for a given temperature and field strength. So, if we
have n = (n↑ + n↓) electrons per unit volume, the induced magnetization along z
is (n↑ − n↓)𝜇B. n↑,↓ are the Boltzmann populations of the spin-up and spin-down
energy levels. They are proportional to exp(±𝜇BB/kBT). So

M = c𝜇B(e𝜇BB∕kBT − e−𝜇BB∕kBT ) (11.6)

and
n = c(e𝜇BB∕kBT + e−𝜇BB∕kBT ) (11.7)

The average z-component of the moment per atom defined as

⟨mz⟩ = 𝜇B(n↑ − n↓)∕(n↑ + n↓) (11.8)

can be written then as

⟨mz⟩ = 𝜇B(ex − e−x)∕(ex + e−x) (11.9)
x = 𝜇BB∕kBT (11.10)

Notice we can write

M = n𝜇B tanh x (11.11)

And at room temperature,

𝜇BB ≪ kBT (11.12)

x is small and so tanh x≈ x. This approximation gives the now famous Curie law
expression for the susceptibility. Using the definition 𝜒 = 𝜇0M/B, we get

𝜒 = n𝜇0𝜇
2
B∕kBT (11.13)
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This is sometimes written as
𝜒 = C∕T (11.14a)

C =
n𝜇0𝜇

2
B

kB
(11.14b)

is the Curie constant.
So, according to the Curie law, the susceptibility diverges as T → 0.

11.3.1.2 The Weiss Correction
The Curie law works well for paramagnetic response at higher temperatures, but
it fails at low temperatures. This failure comes from the very considerations we
have given above. Detailed derivations of the Curie–Weiss law, which are a little
more accurate, can be found in the literature. But here we show that the “fix” is
not so complicated.

First we start with the Curie constant. The Curie law above was derived for
single spin states, but in fact we can extend this to consider the J states of the
atoms, or domains, involved. We do this by replacing spin with the total angular
momentum of the atom:

C = (n𝜇0𝜇
2
B∕3kB)(g2J(J + 1)) (11.15)

where we have now included the Landé g factor and the J(J + 1) angular momen-
tum quantum number.

Next, we must consider the crystal field effects. We have done this somewhat
in “C,” but we must also recognize that the total magnetic field felt by an atom in
the field is B+ 𝜆M where 𝜆 is the Weiss molecular field constant. Thus,

𝜒 =
M𝜇0

B
→

M𝜇0

B + 𝜆M
= C

T
(11.16)

giving
𝜒 = C

T − C𝜆∕𝜇0
(11.17)

This is the Curie–Weiss law and the C𝜆/𝜇0 term is the Curie temperature, Tc.
So, far from Tc, approaching from the T >Tc side, we can write

𝜒 = C
T − Tc

(11.18)

The Curie temperature represents a phase transition from the paramagnetic
phase where an applied field is required to align the “spins” to a system with
enough self-energy to stay aligned at temperatures below Tc. This means as we
approach the phase transition Tc in T , the system becomes “critical,” and a more
complete theory is needed. From statistical mechanics we can already guess what
that outcome will be:

𝜒 ∼ 1
(T − Tc)𝛾

(11.19)

where 𝛾 is a critical exponent. We note that the assumptions that went into getting
Tc change a little from right at the transition to far from it:

Tc,critical ≠ Tc,far from critical (11.20)
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After all, we did use a rather simple reasoning to get this value. So physicists
will usually assign the symbol Θ for Tc at higher temperatures, recognizing that
it is a little different from the value right at criticality. This does make a lot of
sense when you consider that Tc has the 𝜆, molecular field, term in it. Clearly as
the correlation lengths begin to diverge in the phase transition, this crystal field
approximation must be changing significantly.

11.3.1.3 Free-Electron Magnets
So far we have considered only localized electrons, but what if they are delocal-
ized? They still have spin, but do they act as paramagnets?

A reasonable approximation or model for metallic systems can be made by
first considering the magnetic moments of free atoms and then extrapolating to a
free-electron model. Clearly, the electron moments of atoms across the “metallic”
part of the periodic table varies with atomic number Z, with some outer shells
being fully paired such as those with even Z (alkaline earths) and others not.
Atoms such as dysprosium or holmium can have a magnetic moment as high as
∼10𝜇B. Iron, which has an electronic configuration of (Ar)3d64s2, has only four
of the 3d electrons unpaired, so its spin magnetic moment is ∼4𝜇B.

Now let’s consider what happens when we bring a set of iron atoms together as
an example. This is done in Figure 11.9. As the atoms condense to an ideal distance

r0 (equilibrium)
Interatomic distance: r

E E

E

3d

4s

Iron: the 3d and 4s overlap

Width of 3d band

Lower 4s band to top of 3d

4s

4s

3d

3d↓
3d↑

Ef

Density of electronic states: D(E)

2

1

Fermi level

Majority Minority

Density of electronic states: D↑↓ (E)

Figure 11.9 The formation of Fe bands from the 3d and 4s electrons. With no internal
interactions the bands fill with up and down spin electrons evenly. But, as the internal
spin–spin interaction is “turned on,” the 3d band splits into two subbands representing spin
majority and spin minority carriers.
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apart (labeled r0) to form a crystal, bands are formed just as we have seen before. If
we think in terms of the LCAO methods already introduced, then it is easy to see
that different parts of the band structure will be derived from different orbitals,
and these sometimes overlap. This is illustrated in Figure 11.9 by the shading.
Now for iron, the 3d and 4s outer shells form band states that surround the Fermi
level, which means they are the ones taking part in conduction properties. And
there is no gap, so these electrons are free and delocalized, like a Drude metal.

The states below this Fermi level are filled, but in our model, the electrons fill-
ing are allowed to “remember” their spin states as the band is formed. So, what
does this mean? The complete overlap of the narrow 3d band with the broader 4s
will result in some charge transfer between the bands 4s→ 3d. Thus, the atomic
iron configuration becomes something closer to (Ar) 3d7.4 4s0.6. If there are no
internal interactions (spin–spin interactions), then the density of states D(E) and
state filling diagram would look like that at the end of the arrow marked “1” in
Figure 11.9. This is simply the integral of all states filled to the Fermi level, and at
the Fermi level the unpaired electrons can respond to applied fields as any para-
magnet would. However, if we follow the arrow marked “2,” an internal field is
introduced in a way similar to that used when we derived the Curie–Weiss law.
Here there is a very strong internal interaction between spins. In this case it is
clear that the band will spontaneously split into two subbands, distinguished by
their spin projections. We have used a standard graphical artifice to illustrate this
in Figure 11.9. Since the inner shells are all perfectly paired electrons and the 4s
are mostly paired, contributions to these subbands come from the 3d band.

The case of large internal interactions and subband formation is referred to as
ferromagnetism, of which Fe is an excellent example. The energy shift and spin
selection comes about due to the interaction of spins with the internal align-
ment field. The offset and filling of the subbands results in a permanent magnetic
moment, and so, Fe can be a permanent magnet. Indeed, in the subbands, Fe can
have a 3d configuration of 3d4.8↑ 3d2.6↓, a total in unpaired electrons of 2.2 [2].

These simple models do not represent a comprehensive approach to paramag-
netic behavior and can even fail to adequately address such simple cases as dilute
composites of magnetic nanoparticles or semiconductors with dilute magnetic
impurities. However, they can be recast into a number of interesting sub-models,
any one of which is designed to address specific applications or observations in
the lab. Most recasts involve subtle shifts or semiclassical treatments of the basic
paramagnet idea above. They include Brillouin paramagnets, Langevin paramag-
nets, and Van Vleck paramagnets, among others. The reader is invited to follow
the references given to learn more about their specific applications [2]. But no
matter which pathway you go down, you will start with the basic models above
for paramagnetism.

11.3.2 Diamagnetism

Atoms get their permanent magnetic fields by their electronic spin and unpaired
electrons in the outer energy shells. Keep in mind that this last source is just
the loop of an electron running around its orbit to make a current. Above we
have assumed that as an external field is applied, the magnetic moments of these
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sources align with the field, adding to its strength: the paramagnet. But of course
the field might also modify the orbit in some way as to perturb the current and
thus the moment associated with the outer shell electrons. The difference in the
current before and after the modification of the orbit might be thought of as an
additional current added to the system. Lenz’s law suggests that the current, thus
induced, will always be associated with field generation that opposes the applied
field. This is the principle of diamagnetism. Diamagnetism opposes the establish-
ment of a field from the outside.

To do this, the system must allow for some smooth modification of the “angu-
lar momentum current.” Different mechanisms have been proposed for different
materials systems from metals with free electrons to diffuse isolated systems in
insulator crystals. The first and most simple of these models is known as Langevin
diamagnetism, and it is rather powerful in its simplicity.

As illustrated in Figure 11.10, imagine that we have an “isolated” atomic spin
system with J as total angular momentum and L and S as orbital and electronic
spin components, respectively. If we allow for the orbitals in this atom’s outer
shells to “tilt” a bit, then the easiest and most obvious way to “modify” its current
is to allow for the precession of the magnetic moment (the current loop) around
the axis of the applied field. This is known as the Larmor precession, and you have
probably already seen it in basic classical mechanics. In Figure 11.10, the gray
arrow is the applied field B, defining the axis about which a torque will occur. That
torque, 𝝉 = m×B, is a twist of the magnetic moment of the angular momentum
current (ic), about the B axis. m sweeps out the black circle at the top.

Imagine now that the charge e− is spread out over the circle of the angular
moment orbit’s path. This means the precession sweeps out a cone of smeared
charge above and below the zero axis on the graph, giving rise to another current.

Larmor precession of m
about the axis of B

Time-averaged electron
motion giving a
current, iL, that
opposes B

ic current from angular
motion of orbit

y

xe–

m

z

B
→

Figure 11.10 The Langevin model of diamagnetic response. An isolated atom with orbitals
free to precess will allow the establishment of a current that generates an internal (or
atomic-scale) dipole moment that opposes the applied field B. The mechanism is much like
that of a gyroscope in a gravitational field. And the resulting current is centered about the
nucleus of the atom.
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This induced precessional current opposes the field B as best it can. Of course,
the precession can go as fast as it would like to oppose B, and this happens to be
the Larmor frequency:

𝜔 = eB∕2me (11.21)

Naturally we have to assume that the Larmor frequency is much smaller than
that of the orbital motion. Also, in metals with free electrons, we must replace
this idea with the cyclotron frequency, which is, in fact, twice that of the Larmor
frequency. But the idea remains; the new current opposes the establishment of
the field.

Naturally, the inner orbitals can take part in this as well. So if we have an atom
as described with an atomic number Z, then

Iinduced = (−Ze)[eB∕4πme] (11.22)

This current loop will have a magnetic moment:

𝝁 = −[Ze2B∕4me]⟨𝜌2⟩ (11.23)

The ⟨𝜌2⟩ term is perpendicular distance of the electron orbit from the field axis.
To convert this over to simply the average orbital radius ⟨r2⟩ for a spherically sym-
metric set of shells, ⟨𝜌2⟩= 2/3⟨r2⟩. This leaves us with the interesting semiclassical
Langevin result:

𝜒 = N𝜇∕B (11.24)

𝜒 = −[𝜇0NZe2∕6me]⟨r2⟩ (11.25)

For solids with few free electrons, this result is reasonable. Now we just have
to find ⟨r2⟩. (For free-electron metals things are a little more complicated.) Such
values can be calculated using quantum mechanics, and they are related to the
spatial extent of specific orbitals.

11.4 Dia- and Para-Foundations of Other Magnets

The semiclassical presentations and results above actually agree rather well with
the more formal quantum mechanical treatment for these properties. Notice that
these models are referred to as semiclassical because they must invoke some
quantum property, like spin or orbitals that do not decay, to make the models
with classical forces work. Our simple visualizations have identified and esti-
mated three primary sources of magnetic moment in any atom. Further, the atom
condensed into a solid can either act to add to any applied field or oppose it. It
now seems clear how to predict just what it will do and with what strength. We
may also now suppose that there exists some special thermal energy balanced
against the energy of ordering that allows for permanent fields from solids such
as in ferromagnetism.

To do all this that came at a cost, we had to accept some rather significant sim-
plifications – beyond just the use of classical forces and mathematics. As we saw
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T < TN
TN = Neél temperature
(the analogue to the Curie
temperature)

T < Tc
Tc = Curie temperature

Simple versions of spin magnets

Ferromagnet

Antiferromagnet

Ferrimagnet

Figure 11.11 A schematic version of different spin magnets that shows the idealized ordering
of spins in the crystal. Notice here we introduce the Neél temperature, which is the exact
analogue of the Curie temperature for the antiferromagnet. It separates the ordered spin
system from the paramagnetic phase.

with ferromagnetism, the biggest simplification is that we ignored interactions
between the atomic-scale m sources (so-called spin–spin interactions).3

Interactions between the sources of the field internally can yield a wide range
of magnetic behavior. Most of the time we can think of such magnetic systems
as paramagnetic or diamagnetic with an interaction between the m’s added in.
This interaction can, for instance, be different for L and S, change with tempera-
ture or other variables, have different strengths from material to material, or have
different strengths between nonequivalent lattice sites in the same material. To a
large extent, the specifics of these interactions can be used to explain a range of
magnet types such as seen in Figure 11.11.

11.5 Mechanisms of Interaction: Spin Models

How exactly do the moments of adjacent atoms interact? What is the mechanism
and interaction strength? What is the interaction distance? What new phenom-
ena do we get when we add this to the picture? These questions are important to
truly understand the wide range of magnetic phenomena we encounter in the lab.
They have also yielded highly detailed spin models that have found use not only
in magnetism but also in certain aspects of field theory, information theory, and
brain science, as well as quantum computing. Indeed, there are many physicists

3 We are speaking loosely here. Spin–spin interaction here means the interaction between the two
neighboring (or next nearest neighboring) magnetic moments. Many of the models we will develop
will focus on systems of spins with only an up or down orientation and no possibility for
precessional response. Here the dynamics of collective behavior is particularly sensitive to Spin–spin
interactions where the spin is the more pure concept of internal spin quantum number = ±1/2ℏ.
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that have made whole careers from spin models without ever even touching a
magnet (except those on their home refrigerators).

11.5.1 The Mean Field Model

An informal attempt to address spin–spin interactions has already been made
in this text using a mean field approach. Recall that we wrote Bm = 𝜆M and
added it to the applied field, giving a total field B. This represents the interactions
of spins with the mean magnetization caused by all other spins. The approach
gave rise to the Curie temperature, Tc. Below Tc, spontaneous magnetization can
occur, induced alignment can be frozen in to the system, hysteresis occurs in the
magnetization curve, etc. This temperature is the boundary between an ordered
ferromagnetic phase and a disordered paramagnetic phase. With a little algebraic
manipulation, we can show

𝜆 =
Tc

C
=

3kBTc

Ng2S(S + 1)𝜇2
B

(11.26)

and
𝜇0M = 𝜒(Bapplied + Bm) (11.27)

11.5.2 Ising, Heisenberg, XY, and Hopfield4

There is a whole class of spin models that weights nearest neighbor interactions
(spin–spin interactions) the most strongly. As in lattice sums, this removes the
necessity of infinite series and accounts for the fact that dipoles do not interact
over long distances. Generally speaking, the details of some specific interaction
chosen for study are associated with some sort of configurational energy. This
is analogous to a thermodynamic internal energy from which thermodynamic
properties of the model can then be predicted. This energy must be partitioned
appropriately as the system approaches equilibrium with a heat bath or a
phase transition between different configurations typically. So, from this point
of view, spin models become very interesting when trying to understand the
thermodynamics and kinetics of aligned magnetic moment systems. In other
words, they may help us capture the essential properties of magnets as they go
through their phase evolution.

11.5.2.1 Ising Models
Ising models are an extremely well-studied set of spin models proposed by
Lenz in 1920 and solved by Ernst Ising in one dimension (1925) [3] and in the
two-dimensional (2D) square lattice by Lars Onsager (1944). So, they have been
around for a while!

To see how they work, we start off with some set of lattice sites Λ. It doesn’t
really matter how you arrange them, and they can be 1, 2, 3, or higher in
dimension. (The higher ones are helpful for quantum field theory). So, the lattice
is d-dimensional. At each lattice site k ∈ Λ, we place a discrete (up or down)

4 Please note that in different models we use different variables to stand for spin: 𝝈 and S. This is
because they frequently stand for slightly different things, depending on how the model is being
used.
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spin: 𝜎k ∈ {+1, −1}. Once a spin is assigned to every lattice site, we call this a spin
configuration. Obviously, if there are many sites, then there are many unique
spin configurations possible.

Between all adjacent or nearest neighbor sites (i, j), there is an interaction: J ij.
Further, at each site j there is an external magnetic field hj (we had to use lower
case h here because of the H for the Hamiltonian). The energy of this spin config-
uration, 𝜎, is given by the Hamiltonian

H(𝜎) = −
∑

⟨i j⟩
Jij𝜎i𝜎j − 𝜇

∑

j
hj𝜎j (11.28)

The first sum is over pairs of adjacent spins, counting each once. Note that
the sign in the second term should be positive because the electron’s magnetic
moment is antiparallel to its spin, but the negative term is conventional [4].
The probability of this spin configuration occurring is given by the Boltzmann
distribution

P
𝛽
(𝜎) = e−𝛽H(𝜎)

Z
𝛽

(11.29)

Z
𝛽
=
∑

𝜎

e−𝛽H(𝜎) (11.30)

𝛽 = (kBT)−1 (11.31)

To predict the expectation of some observable f, that is, its mean value for this
lattice at a given temperature,

⟨f ⟩
𝛽
=
∑

𝜎

f (𝜎)P
𝛽
(𝜎) (11.32)

P
𝛽
(𝜎) is the probability that, in equilibrium, the system is in the 𝜎 spin config-

urational state. Ising models are usually classified according to the sign of the
interaction:

Jij > 0, the interaction is called ferromagnetic (11.33a)
Jij < 0, the interaction is called antiferromagnetic (11.33b)
Jij = 0, the spins are noninteracting (11.33c)

So, in the ferromagnetic Ising model, spins want to be aligned. That is to say,
the spin configurations where most or all of the adjacent spins have the same sign
(up or down) have higher a probability of occurring. In the antiferromagnetic
case of the model, “adjacent spins with opposite sign” is the more probable spin
configuration. This all depends on the J and how much it raises or lowers energy,
depending on spin alignment. So, it defines the ordering phase of the magnet.
And, if we ask about the external field, we get something similar:

hj > 0, the spin site j desires to line up in the positive direction (11.34a)
hj < 0, the spin site j desires to line up in the negative direction (11.34b)
hj = 0, there is no external influence on the spin site (11.34c)

These models can be useful even without considering the external field. In this
case the model is symmetric under switching the value of the spin at all the lattice
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sites. Or we can assume that the J ij = J as another simplification. This gives a
translationally invariant ferromagnet on a d-dimensional lattice.

In one dimension, the Ising models do not allow for a phase transition generally
[2]. However, in two and three dimensions, the models do allow for a phase tran-
sition between an ordered and a disordered phase as demonstrated by Peierls
in 1936 [2]. In 1944, Onsager showed that the correlation functions and free
energy of the 2D Ising model are determined by a noninteracting lattice fermion.
Onsager in 1949 and Yang in 1952 demonstrated an expression for spontaneous
magnetization in these systems [2]. So, clearly the study of these models has had
a surprising longevity.

11.5.2.2 Heisenberg Models
Heisenberg models carry the idea of the Ising model, a little further. Instead of
having spin-up or spin-down on each lattice site, we now allow for multiple spin
projections. Actually, this can be formulated in two ways, with semiclassical or
quantum spins. (These are not so different.) In either case we begin with a Hamil-
tonian that can look something like

H(𝜎) = −
∑

⟨i j⟩
Jij𝜎i ⋅ 𝜎j − 𝜇

∑

j
hj ⋅ 𝜎j (11.35)

The exchange integral, J ij, can be taken as a constant, J , for i and j nearest neigh-
bors and zero otherwise, or it can have specified values.5 Other terms are as in
the Ising model except the 𝜎i, which is now a unit vector of the site spin. (As an
aside, sometimes J is redefined as 2J so that the factor of 2 will cancel the factor
of 1/2 necessary in front of the summation to keep from double counting the i, j
pairs. So the above equation is correct as it stands with all combinations of i and
j, but J is 1/2 the interaction energy.)

11.5.2.3 XY models
XY models are really rather simple: classical spins of unit length in a 2D lattice
that can rotate in the plane of the lattice. Of course, the model can be cast such
that these 2D spin vectors sit in a 3D lattice or higher, if those sorts of things
interest you. However, typically, higher-order XY models leave the spin degrees
of freedom at 2D.

For the standard version of the XY model, following the reasoning used for
Heisenberg and Ising, we can write an interaction and configuration energy as

H(s) = −
∑

i≠j
Jijsi ⋅ sj − 𝜇

∑

j
hj ⋅ sj = −

∑

i≠j
Jij cos(𝜃i − 𝜃j) −

∑

j
hj cos 𝜃j

(11.36)
This is, of course, doing nearest neighbor sums but could be extended if desired.

The configuration probability of statistical observables becomes
P(s) = e−𝛽H(s)∕Z (11.37)

Z =
∫[−π,π]Λ

∏

j∈Λ
d𝜃je−𝛽H(s) (11.38)

5 Usually: h = gBμ0H
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Figure 11.12 Visualization of a 1D XY model from the top.

where Λ is the set of all lattice points and Z represents the traditional partition
function from statistical mechanics. Remember that 𝛽 = 1/kBT .

Just to see how this might work, let’s look at the 1D case (Figure 11.12).
The partition function integral above becomes

Z =
∫

π

−π
d𝜃1 · · · d𝜃Le𝛽J cos(𝜃1−𝜃2) · · · e𝛽J cos(𝜃L−1−𝜃L)

= 2π
L∏

j=2
∫

π

−π
d𝜃′j e

𝛽J cos 𝜃′j = 2π
[

∫

π

−π
d𝜃′j e

𝛽J cos 𝜃′j

]L−1

(11.39)

where L is the last in the series of spins and 𝜃’j is simply 𝜃j − 𝜃j+1. This means all
statistical observables have a form

Z = −1
𝛽

ln
∫

π

−π
d𝜃′j e

𝛽J cos 𝜃′j = −1
𝛽

ln[2πI0(𝛽J)] (11.40)

where I0 is the modified Bessel function of the first kind.
XY models are particularly important for the study of critical phenomena and

phase transitions and in our understanding of how dimension plays a role in crit-
icality. Though this is not a text on statistical mechanics, you might recall that
criticality is reflected in many fields of physics and exhibits what is known as
traits of universality. This simply means the functional approaches to divergences
in the theories of particle physics, solid-state physics, etc. are all the same. Now
this could be a statement of something deeper in the universe. Or it may be a
statement about our limited understanding of the mathematics that we use to
describe our universe. Either way, XY models have been used to provide a little
glimpse into this question.

Of course in terms of this text, they are also important. After all, we are trying
to understand solids even as dimension is being restricted. The Mermin–Wagner
theorem states that 2D spin systems such as XY and Heisenberg models cannot
have phase transitions [5]. As it happens, 1D spin systems, as shown above, can
also not show phase transitions. But “spin” can stand for many things in the uni-
verse, so these are quite interesting results generally. For the solid-state physicist,
it suggests rather strongly that if we observe a 1D magnet (permanent magnetic
moment), then we should be a little careful. There is likely something in a higher
dimension stabilizing that structure in place.

But we aren’t done quite yet. As it happens, there is a caveat. It is frequently
the case that being too dogmatic about what a phase transition is or is not can
lead us to miss something important. Let’s consider the 2D XY system with near-
est neighbor interactions only. At very low temperatures (T <Tc) Tc is a kind
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of transition temperature demarking the boundary between two different kinds
of behaviors. For now we shall just say that it relates to spin–spin correlation
length. We can show that the correlation function can be written, using the above
equations, as

⟨Si ⋅ Sj⟩ ∝ r−𝜂 (11.41)

and
lim

T→Tc

𝜂 = 1∕4 (11.42)

Though we haven’t derived it explicitly here, this result does come directly from
the XY Hamiltonian for the case where the externally applied field is zero (hj = 0).

At high temperatures (T >Tc), spins are strongly uncorrelated. So much so that
even nearest neighbor spins have almost no correlation. In this case,

⟨Si ⋅ Sj⟩ ∝ er∕𝜉 (11.43)

where 𝜉 is the correlation length and it diverges at Tc.
So there do exist two phases:

1. A low-temperature phase: This has some “quasi” long-range order where most
spins are aligned. The correlation function decays as a power law.

2. A disordered high-temperature phase: Here, the correlation function decays
exponentially.

At the critical temperature, Tc, a type of transition occurs known as the
Kosterlitz–Thouless transition. The Kosterlitz–Thouless transition is not a typical
second-order phase transition where the first derivative of the internal energy
is continuous. But it can be quite useful in understanding low-dimensional,
finite-sized magnetic structures.

Using this model it is also possible to show, with a little diligence, that

CV =
1

kBT2 (⟨E
2⟩ − ⟨E⟩2) (11.44)

and
𝜒 = 1

kBT
(⟨M2⟩ − ⟨M⟩2) (11.45)

11.5.2.4 Hopfield Models
As a curious aside, we could mention the Hopfield network model. Such a net-
work is a form of interconnected spin system, very much like the Heisenberg
model. It was first described by Little in 1974 and popularized by John Hopfield
in 1982 [6] as a way to model content-addressable (“associative”) memory sys-
tems. Surprisingly, this spin system uses binary threshold nodes (like Ising), but
they capture some interesting features of human memory including their ability
to make mistakes (convergence to false minima)!

Briefly, all spin pairs (i, j) in the model network are connected, and the connec-
tion is assigned an interaction weight𝜔ij. These connection weightings have some
rules: (i) 𝜔ij = 0 for i = j, no self-connections, and (ii) 𝜔ij = 𝜔ji. Now instead of
having nearest neighbor and thermal considerations to “flip” spins, the Hopfield
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model “updates” spin sites following rules based on numerous interactions. So,
updating is performed if

si ←

{
+1 if

∑
jwijsj ≥ 𝜃i

−1 otherwise
(11.46)

Here, si is the site value of the ith site. 𝜃i is the “threshold value” of the ith
site. Here, clearly, this threshold depends on the collective influence of many spin
sites.

Interestingly, the Hopfield model assigns a scalar number to each configuration
taken by such a network. This is usually referred to as the configuration energy,
and it is given as

E = −1
2
∑

i,j
wijsisj −

∑

i
𝜃isi (11.47)

The curiosity here is that this is so similar to the Heisenberg model we have
introduced above. Indeed, the energy function in the Hopfield model belongs
to the more general class of Ising spin models (as does the Heisenberg model
energy). They are a specialized case of the mathematical creatures called Markov
chains. Yet the approach has been indispensible in the modeling of memory pro-
cesses in basic brain function.

11.5.3 Spin Wave and Magnons

An interesting outcome of spin models is that we can anticipate the excitations of
spin systems and their dynamics. This leads naturally to spin waves and magnons.

11.5.3.1 Spin Waves
Spin waves are collective magnetic excitations of some system of spins. There are,
in fact, many theoretical models that support the formation of spin waves, each
sensitive to the exact nature of the exchange interaction used and each applicable
to some specific observation in magnetics. There are really a couple of ways to
picture the spin wave. The first is to use the classical Heisenberg magnet, and
the second uses itinerate electron magnets, both discussed above. As with most
basic texts, we will present the Heisenberg magnet approach here. It gives a more
“intuitive” feel for the behavior of these excitations.

We begin by considering only a classical Heisenberg model where the spin is a
classical vector. In this treatment, assume that L has been quenched by the lattice
so that only the S’s are considered (yes, you can have antiferromagnetic spin wave
solutions if this assumption is not made). We note that a quantum treatment will
yield the same result. Each atom carries a magnetic moment: −→𝜇 i = −g𝜇B

−→S i. The
energy that this 𝜇i observes is −−→𝜇 i ⋅

−→B when placed in a field B. And we know
that from our mean field model above, the field that surrounding spins create is

Beffect
i = − 2

g𝜇B

∑

j
JjSj (11.48)
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Lattice

Lattice

A Ferromagnetic ground
state if the 1D
Heisenberg system

Precession about a
cone with each spin
following each other
by the same phase or
angle – a spin wave

Spin waves

Figure 11.13 A simple visualization of the spin wave in a Heisenberg magnet.

Remember that this also gives a torque, 𝜏i = 𝜇i × Beffect
i , and from this we can

construct equations of motion. Generally we can then give a spin–spin expression
for torque:

ℏ

dSi

dt
= 2
∑

j
Jj(Si × Sj) (11.49)

From here let’s simplify to just the 1D system shown in Figure 11.13. This means
j in the summation runs only along a string of spins, and we can approximate
nearest neighbor interactions (J i = J) and reduce the sum

dSn

dt
= J(Sn × Sn−1 + Sn × Sn+1) (11.50)

or in matrix from
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dSx
n

dt
dSy

n

dt
dSz

n

dt

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= J
⎡
⎢
⎢
⎢
⎣

||||||||

êx êy êz

Sx
n Sy

n Sz
n

Sx
n−1 Sy

n−1 Sz
n−1

||||||||

+

||||||||

êx êy êz

Sx
n Sy

n Sz
n

Sx
n+1 Sy

n+1 Sz
n+1

||||||||

⎤
⎥
⎥
⎥
⎦

(11.51)

From here we consider just the x-component (since all the others will work the
same except for the occasional sign change):

dSx
n

dt
= J[Sy

nSz
n−1 − Sz

nSy
n−1 + Sy

nSz
n+1 − Sz

nSy
n+1]

= J[Sy
n(Sz

n−1 + Sz
n+1) − Sz

n(S
y
n−1 + Sy

n+1)] (11.52)

Small amplitude excitations means Sz
n ≈ S, Sx,y

n ≪ S. So
dSx

n

dt
= J[Sy

n2S − S(Sy
n−1 + Sy

n+1)] = JS[2Sy
n − Sy

n−1 − Sy
n+1] (11.53a)

dSy
n

dt
= −JS[2Sx

n − Sx
n−1 − Sx

n+1] (11.53b)
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dSz
n

dt
= 0 (11.53c)

For this set of equations, we introduce a solution ansatz that is plane wave in
form:

Sx
n = uSei(nka−𝜔t) (11.54a)

Sy
n = vSei(nka−𝜔t) (11.54b)

The nka part of the exponent accounts for the fact that the spins are on a lattice
with lattice parameter “a.”

Copy the solution ansatz into the equations of motion and we get

− i𝜔uSei(nka−𝜔t) = vJS2[2 − e−ika − e+ika]ei(nka−𝜔t) (11.55)
− i𝜔vSei(nka−𝜔t) = uJS2[2 − e−ika − e+ika]ei(nka−𝜔t) (11.56)
− i𝜔u = 2vJS(1 − cos ka) (11.57)
− i𝜔v = 2uJS(1 − cos ka) (11.58)
(

i𝜔 2JS(1 − cos ka)
2JS(1 − cos ka) −i𝜔

)(
u
v

)
= 0 (11.59)

This gives a nontrivial solution of
||||

i𝜔 2JS(1 − cos ka)
2JS(1 − cos ka) −i𝜔

||||
= 0 (11.60)

𝜔 = 2JS(1 − cos ka) (11.61)

which is known as the magnon dispersion relation and is the dispersion relation
for Heisenberg spin waves in 1D. It describes the wave setup as in Figure 11.14.

From the top this looks almost like an XY magnet, but it isn't. This is
the perpendicular component of S to Sz. It lies in the xy planeSy + Sx

Sx

x

t

S⊥→

Figure 11.14 This can be drawn in many ways. But the precession of the x and y components
of the spin around the circle at the top of the cones of Figure 11.13 forms a wave. The ansatz
solutions describe this wave.
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It is no accident that these solutions share a strong resemblance with the
phonon modes and, indeed, they quantize in the same way. Imagine that
boundary conditions are imposed such that the wave must fit within the lattice.
Then k’s become quantized as do the angles that the neighboring spins can make
with each other: that is, the spin can only advance by a set phase angle from
circle to circle. These quantized spin wave modes are referred to as magnons.
They represent the low energy excitations of the Heisenberg spin magnet in any
dimension, though we have only worked the 1D case here.

11.5.3.2 Thermodynamics
Since the solutions do have such a resemblance to the phonon modes, let’s exam-
ine the thermodynamics of such a wave system. This will help illustrate the quan-
tization as well as show that such waves carry energy and have an effect in the
magnetization of the system. We start with internal energy:

E =
∑

k
ℏ𝜔k

(
nk +

1
2

)
(11.62)

U = ⟨E⟩ =
∑

k
ℏ𝜔k

(
⟨nk⟩ +

1
2

)
= E0 +

∑

k

ℏ𝜔k

e𝛽ℏ𝜔k − 1
(11.63)

In the limit T → 0, only low energy magnons (k → 0) are excited:

𝜔 = 2JS(1 − cos ka) ≈ JSa2k2 (11.64)

with:
∑

k
· · · = V

(2π)3 ∫
d3k · · · (11.65)

U = E0 +
V
(2π)3 ∫

4𝜋ℏJSa2k4

e𝛽ℏJSa2k2 − 1
dk (11.66)

x = k

√
hJSa2

kBT
= k
√

D
kBT

(11.67)

dx = dk
√

D
kBT

(11.68)

U = E0 +
V
(2π)3 ∫

4πx4
(kBT

D

)2 D
ex2 − 1

√
kBT
D

dx

= E0 +
V

2π2 D−3∕2(kBT)5∕2
∫

x4 dx
ex2 − 1

(11.69)

∫

∞

0
x4 dx

ex2 − 1
=

3
√
π

8
𝜁 (5∕2) ≈ (1.3419)

3
√
π

8
(11.70)

𝜁 (s) =
∞∑

k=1

1
ks (11.71)

CV =
(
𝜕U
𝜕T

)

V
∝
(kBT

D

)3∕2

(11.72)
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But notice that the exponent is different from the phonon case. Well, we would
expect this, right? The dispersion is a little different.

And for the magnetization

U = E0 +
∑

k
ℏ𝜔(k)⟨nk⟩ (11.73)

keep in mind the k is a vector space (we have simplified the notation here):

U = E0 +
∑

k
ℏ𝜔(k) 1

2S
⟨|Sx

k|
2 + |Sy

k|
2⟩ (11.74)

Sn =
∑

k
Skeik⋅rn (11.75)

So
1

2S
⟨|Sx

k|
2 + |Sy

k|
2⟩ = ⟨nk⟩ (11.76)

Classically this is the same as saying

E = 1
2

mẋ2 + 1
2

m𝜔2x2 (11.77)

⟨E⟩ = 1
2

m⟨ẋ2⟩ + 1
2

m𝜔2⟨x2⟩ = m𝜔2⟨x2⟩ ↔ ℏ𝜔⟨n⟩ (11.78)

⟨x2⟩ ↔ ⟨n⟩ (11.79)

Or in words, the number of spin wave excitations in a given mode is equivalent
to the average squared amplitude of the equivalent classical oscillator.

Continuing on with magnetization,

M(T) =
g𝜇B

V
∑

n
⟨Sz

n⟩ =
g𝜇B

V
∑

n
⟨
√

S2 − [(Sx
n)2 + (S

y
n)2]⟩ (11.80)

We look closer at
√

S2 − [(Sx
n)2 + (S

y
n)2] (11.81)

for the case where

(Sx
n)2 + (S

y
n)2 ≪ S2 (11.82)

T → 0 (11.83)

√
S2 − [(Sx

n)2 + (S
y
n)2] = S

√

1 −
[(Sx

n)2 + (S
y
n)2]

S2

≈ S
{

1 −
[(Sx

n)2 + (S
y
n)2]

2S2

}
(11.84)

M(T) ≈
g𝜇B

V
∑

n

⟨
S
{

1 −
[(Sx

n)2 + (S
y
n)2]

2S2

}⟩

=
g𝜇B

V

(

NS −
∑

n

⟨ [(Sx
n)2 + (S

y
n)2]

2S

⟩)

(11.85)
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M(T) =
g𝜇B

V

(

NS −
∑

n

1
2S
⟨(Sx

n)2 + (S
y
n)2⟩

)

(11.86)

M(T) =
g𝜇B

V

(

NS −
∑

n
⟨nk⟩

)

(11.87)

So, the magnetization is reduced because the spin system does not align as fully
when it is supporting waves. We substitute from above

M(T) =
g𝜇B

V

(
NS − V

(2π)3 ∫

4πk2dk
e𝛽ℏJSa2k2 − 1

dk
)

(11.88)

with

x = k

√
hJSa2

kBT
= k
√

D
kBT

(11.89)

dx = dk
√

D
kBT

(11.90)

so

M(T) =
g𝜇B

V

(

NS − V
2π2

(kBT
D

)3∕2

∫

x2dx
ex2 − 1

)

(11.91)

M(T) = M(T = 0)

(

1 − V
2π2NS

(kBT
D

) 3
2
√
π𝜁 (3∕2)

4

)

(11.92)

The result is known as Bloch’s T3/2 law. This small exercise nicely illustrates a
few of the more important features of the spin wave system. It should be obvious
that extensions into higher dimension can be made for which dispersion branch-
ing (as seen for phonons) will also occur.

11.5.3.3 The Particle Nature of Magnons
There are a few more things you should know before we leave magnons:
1. Magnons carry an angular momentum of 1ℏ.
2. Magnons carry a magnetic moment of 1g𝜇B, which corresponds to a spin flip

in a solid. Because of this integer spin, surprisingly, the Magnon is a boson!
3. The wavelengths for magnons are typically 0.6–2.0 nm.
4. In the very long wavelength limit k → 0, 𝜔→ 0, T → 0, a long-range order is

stable. This is associated with spontaneous breaking of continuous symme-
tries in the system. (For example, the Heisenberg Hamiltonian has a continu-
ous rotational symmetry that can be spontaneously broken depending on the
dimension, d.)

Such “ordered states” with k → 0,𝜔→ 0 are guaranteed in systems with bro-
ken continuous symmetries such as our classical Heisenberg spin model, and
they are known as Goldstone modes or Goldstone bosons. Of course, physically,
it isn’t so hard to visualize what may be going on here. Imagine that the exci-
tation has such a long wavelength that it can fit exactly 1/2 𝜆 onto the lattice.
At this point there is little difference between the alignment of this situation
and that of the ground state we started with.
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11.5.3.4 Stoner Excitations
We did mention at the beginning of the subsection that there were two ways to
formulate the spin wave: one using discretely placed lattice spins and the other
using the free-electron models of magnets we introduced above. Magnetic exci-
tations in the itinerate electron systems are usually first described using Stoner
excitations, which is an electron–hole excitation wherein the electron and the
hole occupy two different, opposite spin subbands [7]. There are two configu-
rations of such excitations: the majority hole with minority-electron state and
minority hole with majority-electron state. Though we describe this as a single
particle state excitation, these itinerate electron bands are correlated, and the
Stoner excitations can form a continuum of states spread across the Brillouin
zone. Herring and Kittel [8] have worked out a complete theory on how this is
equivalent to a spin wave system and further yields the T3/2 law as expected.

11.5.3.5 Coupling to the Electromagnetic Field: Magnon–Photon Coupling
The time-dependent magnetic field of the spin wave can couple with the
time-dependent magnetic field of an incident electromagnetic wave. This is
in direct analogy to the polariton in the next chapter. The interacting system
can have its own dispersion curve, and it behaves “particle like” [9]. Of course,
the coupling in the magnetic system is significantly weaker than that of the
electric (polariton) system, and so the dynamics can have regimes of chaotic
behavior. The temptation is to name such a beast a magneton to be consistent
with polariton, but unfortunately we have already used this word for 𝜇. Perhaps
magnoniton would do? You will have to wait for our discussion of polaritons to
see why this is so interesting from a general perspective.

11.6 More Complicated Situations

The models above present relatively simple and straightforward pictures of the
interactions between lattice sites with an L and S. However, magnetic phenomena
in materials can get significantly more complicated than this. Here we will briefly
mention some of those complications.

11.6.1 Double Exchange

Magnetic exchange (that J integral above) is typically simplified as much as pos-
sible to make the sums and integrals easy. But what about the case where neigh-
boring lattice sites are not equivalent and electrons (spin carriers) are physically
shared through bonding? This can certainly complicate the idea of a simple over-
lap of wavefunctions as the interaction integral implies.

The double exchange mechanism is just this type of magnetic exchange. In this
mechanism, ions with different oxidation states share charge. And when they do,
the spin from the charge of the “donor” ion effects the spins of the charges in
the “acceptor” ion [10]. The ease or difficulty that an electron has in exchanging
between the two ionic species, together with how much energy is gained or lost
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Figure 11.15 A common double
exchange example AMnO3 where A is
used to create different valencies in the
Mn.

AMnO3

A = La, Nd, Pr, Ca, Sr, Ba, Pb

A2+Mn4+O3
2– → Mn is (3d)3

A3+Mn3+O3
2– → Mn is (3d)4

O2–

T3+/D2+

Mn3+/Mn4+

a = b = c = 3.84 Å 

in the new spin configuration, determines (for the most part) whether double
exchange materials are ferromagnetic or antiferromagnetic.

A really commonly found example for double exchange is the manganates:
AMnO3. The typical structure and the Mn–O–Mn double exchange units
are shown in Figure 11.15. To make this work, two different oxidation states,
or outer valencies in a more general sense, must find themselves pairing up
through the oxygen (in this case). So exactly what A is in the structure is quite
important. Here in Figure 11.15, the manganate would need to place unit cells of
the T3+/D2+, as shown, in proximity.

In the AMnO3 example, the Mn eg orbitals overlap with the O 2p orbitals,
and one of the Mn ions has more electrons than the other. In the ground
state, electrons on each Mn ion are aligned according to Hund’s rules as seen
in Figure 11.16. In the double exchange mechanism, the O gives a spin-up
electron to Mn+4, leaving behind a vacant orbital. This orbital is then filled by an
electron from Mn+3. So, the electron hops between neighboring metal ions, and,
importantly, it retains its spin. Clearly, the electron movement between ions
is facilitated if the electrons on the “accepting ion” do not have to change spin
direction in order to conform with Hund’s rules when the “visiting” electron
arrives. In the case where the new spin configuration reduces the overall energy
on the acceptor site, this energy savings can lead to ferromagnetic alignment of
neighboring ions.

Figure 11.16 The double exchange
mechanisms provide for the transfer
of spin between the two ionic species.
The hopping process back and forth,
together with the energy gain from
Hund’s rules when a stable spin
configuration is achieved, allows for
the formation of ferromagnetic order.

eg eg

t2g t2g

O 2p

Mn3+ (d4) Mn4+ (d3)
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11.6.2 Super Exchange

The Kramers–Anderson superexchange (or just super exchange) “looks” similar
to double exchange in that it involves the sharing of electrons. But looks can
be deceiving. Double exchange occurs when the ions have different numbers of
valence electrons generally. Remember the electrons must hop back and forth
between “donor” and “acceptor” sites. Superexchange occurs when nearest neigh-
bor cations have the same valency, but they are linked together by a nonmag-
netic intermediary anion (also, strictly speaking, the double exchange mechanism
doesn’t need an intermediary). The job of the intermediary is to maintain the
spins that are shared between the cations and enforce spin selection rules across
the superexchange “unit.” This typically leads to a strong ferromagnetic or, more
commonly, antiferromagnetic coupling and system alignment.

We show the common superexchange picture using the common example
MnO in Figure 11.17. From this diagram, and the naïve model we have presented
so far, one might guess that the correlation of spin projection in space and the
overall symmetry of the bonding configuration are important for superexchange
mechanisms. That is, if the spin is to be maintained through the nonmagnetic
intermediary, this is clearly easier if the bonding is collinear as shown but may
be harder if the bonds are at 90o, for instance. And indeed, this is the case. In
fact, spin configurations in superexchange systems are quite sensitive to direct
exchange mechanisms competing with superexchange in the system, variations
in the cation–anion–cation bonding angles, and circumstances when spin–orbit
coupling becomes large.

A set of semiempirical rules called the Goodenough–Kanamori rules [11] are
typically used in providing insight into the qualitative magnetic properties for a
wide range of materials. They use orbital symmetry and electron occupancy of
the overlapping orbitals to predict spin selection and ordering. A full quantum
superexchange theory generally assumes localized orbitals (as opposed to
free-electron bands) and Hubbard-like transfer of electrons (with hopping
integrals and Hubbard energies). Thus, the Pauli exclusion principle dominates
spin–spin interactions.

11.6.3 RKKY

You might recall that early on we eliminated the nuclear spin from our consider-
ations. However, the nuclei of atoms can certainly have spin and a magnetization.
This is the basic consideration of the RKKY models. More specifically, the RKKY

Mn O 2p Mn

dz2 dz2pz

Superexchange in MnO

Figure 11.17 Superexchange in the MnO system.
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interaction is the J/t≫ 1 limit of double exchange (t is that Hubbard hopping
integral if you remember) and is suitable for nuclear spin interaction as well as
the interaction of inner d- and f-shell electrons in a metal.

In the simplest terms the Hamiltonian of the system includes a spin–isospin
term referred to hyperfine coupling:

H = Hel +
∑

i
ASel

i ⋅ Inucl
i (11.93)

The Hel term is the electron Hamiltonian for the system.
A particularly important success of RKKY theory has been to explain giant

magnetoresistance (GMR). GMR is the coupling between thin layers of magnetic
materials separated by a nonmagnetic spacer material. For such systems, magne-
tization will oscillate between ferromagnetic and antiferromagnetic as a function
of the distance between the layers, as predicted by RKKY [12].

11.7 Time Reversal Symmetry

If you have been following along closely, you may have noticed an unusual prob-
lem with our descriptions of magnetic materials to this point. If we consider a spin
vector (J), it has an associated current with it, as we have explained. Of course, the
right-hand rule relates the current and spin directions. Now imagine the rules and
equations for this system running backward in time (t goes to−t). Or in quantum
terms, we apply the time reversal operator to the systems’ wavefunction. We like
for the basic rules of our universe (those not involved with entropy) to run the
same backward and forward in time: think Newton’s laws. The result here is to
reverse the direction of the flow of the current. But this operation would require
the reversal of the spin since it aligns or anti-aligns with that field. Spin is not a
time-dependent part of the dynamics, and a reflection is required to make the
dynamics of t and −t look like time-reversed versions of each other. Said collo-
quially, −t is not the backward running version of t for this system! In a solid,
consider, as an example, ferromagnetic ordering. When the ferromagnetic phase
sets in (let’s say after a phase transition), that ferromagnetic crystal has a definite
spin direction and not the reverse one. This selection of a spin projection itself
breaks time reversal symmetry.

In this context of condensed matter physics, time reversal symmetry breaking
(TRSB) has generally become associated with something in the system behav-
ing like a magnetic field. Consider cases like Sr2RuO4 and UPt3. Both have spin
triplet, rather than spin singlet, Cooper pairs. The superconducting order param-
eter in Sr2RuO4 is a complex function given by

Ψ = |Ψ0(𝜃)|e−i𝜙(𝜃) (11.94)

|Ψ0| is the amplitude and 𝜙 is the phase of this order parameter. Both of these
parameters can generally vary around the Fermi surface, which is parameterized
by a 𝜃 that denotes where you are on the Fermi surface. The superconducting
order parameter of Sr2RuO4 in Figure 11.18 is widely believed to have px ± ipy
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Figure 11.18 Two of the Fermi surfaces of strontium
ruthenate [11], showing the continuous evolution of
the phase around the Fermi surface, as 𝜃 = 0, π/2, π,
3π/2.

symmetry. This corresponds to a phase that continuously winds around the
Fermi surface.

Any gradient in the phase corresponds to a current for a superconductor. This is
because the phase difference appears like a translation of the carriers. If this gra-
dient is built into the order parameter itself, the material will naturally and in the
absence of any external field feature a persistent and circulating current in the
superconducting state. As we know, current→ internal magnetic field→TRSB.
So, when these materials enter the superconducting state, something like a mag-
netization appears, and this breaks time reversal symmetry for the spin pairs.
These edge currents have yet to be directly observed for these systems, likely due
to domain structure. But the magnetizations have been observed using the polar
Kerr effect and muon spin relaxation, and the onset of the Kerr rotation corre-
sponds directly to Tc.

So! You might say: what does it matter if the dynamics of these Cooper pairs
is not time reversible? Perhaps the most interesting consequence of time rever-
sal symmetry in such systems, that is, from ferromagnets to superconductors, is
the appearance of a Goldstone mode that has zero energy at the zero momentum
transfer in the spin wave spectrum.

11.8 Summary

This chapter has presented a “curio cabinet” of magnetic models and phenom-
ena. We have not developed all of these concepts because some are quite specific
and the physicist goes into the details when these specifics become relevant to a
given application (there are many exceptions to any given approach). However,
it is quite important to understand how they are related to each other and the
deeper message that they bring to our conversation. And that message is that spin
systems unlock the power of condensed matter systems to illustrate the deeper
meanings of the fundamental symmetries in the universe and their relationship
to dimension and scale.
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Exploring Concepts

1 A Little Experimental Fun: Imagine you have two physically identical metal
bars. One has a permanent magnetic moment, and one is a soft magnet that
has a magnetic response but does not have a permanent moment. You work
in a poorly funded lab, and while this lab is completely shielded from external
magnetic fields (you cannot sense the Earth’s magnetic field), you have access
only to a single piece of string. Can you tell which is the permanent magnet
and which is not? Explain. If you are having a little trouble with this one, we
can help you out by giving you one more tool. What other simple tool that is
not a magnetometer or the like might you be able to use if you could just run
down to the supply room?

2 Be Careful with Models of Spinning Balls of Charge: Many of the models have
taken great liberty in visualizing the magnetic moment of constituents as
related to the swirling and spinning of electric charge at the atomic level.
There is questionable wisdom in this. For instance, from this we might con-
clude that the magnetic responses of 12C and 13C are the same since they differ
only by the addition of a charge-less neutron in the nucleus. But while we
know that 12C has no magnetic moment,13C certainly does, making it useful
in 13C dating. In fact the uncharged neutron possesses a magnetic moment of
−1.913 nuclear magnetons. Do a little digging and see why this is.

3 Thermodynamics and Magnets: We have seen so-called “two-state systems”
before in this text. Here in magnetism, we have a very natural set of circum-
stances to give rise to such systems. Imagine naively that we have an atom
with a large nuclear magnetic moment. The outer shell of this atom has a
spin aligned with this nuclear field, and a spin anti-aligned, causing a sub-
tle and small energy splitting – a two-state system. These hyperfine interac-
tions between nuclear and electronic spins in magnetically ordered atoms and
paramagnetic salts can have important effects on the thermodynamics of the
system.

(a) Show that for such a two-state system, the heat capacity can be written as

C =
(
𝜕U
𝜕T

)

Δ
= kB

(Δ∕T)2eΔ∕T

(1 + eΔ∕T )2

where Δ is related to the splitting energy:

kBΔ

(b) Examine this function for T ≫Δ and T ≪Δ; explain the trends. Show for
the former

C ≅ kB(Δ∕2T)2 + · · ·

which is the experimental sign that a two-state system might be present.
The peaks that occur in such plots are known as Schottky anomalies.
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4 Conduction Electrons: Charles Kittel, in his now famous book, points out that
the susceptibility of an electron gas in the conduction band of a system at
absolute zero can be thought of in terms of its energy minimization. This
clever approach goes something like this.
Let the spin-up N+ and spin-down N- concentrations in this band at T = 0 be
written as

N+ = 1
2

N(1 + 𝜁 ); N− = 1
2

N(1 − 𝜁 )

where N is the total concentration of electrons and 𝜁 is some slight deviation
away from half and half.

(a) Show then that in an applied magnetic field B,

E+ = E0(1 + 𝜁 )5∕3 − 1
2

N𝜇B(1 + 𝜁 )

where

E0 =
3

10
N𝜀F

and similarly for E−.
(b) Now here comes the tricky part. Minimize the total energy E = E+ +E-,

with respect to 𝜁 , to show that there is a nonzero equilibrium value in the
applied field.

(c) Show that the magnetization is then

M = 3
2

N𝜇2B
𝜀F

(d) Now let’s approximate electron–electron spin interactions like this.
Assume that electrons with a parallel spin, in the population, interact with
an energy –V (V is a positive number). Further assume that electrons with
antiparallel spin alignment do not interact at all. Show that the energy of
the spin-up band (this population has a different and separate energy, so it
has its own band now) is

E+ = E0(1 + 𝜁 )5∕3 − 1
8

V N2(1 + 𝜁 )2 − 1
2

N𝜇B(1 + 𝜁 )

and similarly for E−.
(e) From this result minimize the total energy again with respect to 𝜁 , as you

did before to show that

M = 3N𝜇2B
2𝜀F −

3
2
VN

in the limit of 𝜁 ≪ 1. This is an enhancement of the susceptibility by the
interaction.

(f ) Now allow B→ 0. Show that for

V > 4𝜀F∕3N

the total energy is unstable if 𝜁 = 0. As Kittel points out, this means that the
ferromagnetic state 𝜁 ≠ 0 has a lower system energy than the paramagnetic
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state, and the V value is known as the Stoner condition. But this is reasoned
for the T = 0 condition. How would having a small but nonzero temperature
change such a result? Naturally, you may want to break your answer into
two regions: kBT <V and kBT >V .

5 Magnons in Different Dimension: As we have suggested throughout this
text, the dimensionality of a material – the physical dimension of a material
object – will influence in that material’s intrinsic properties. For properties
that depend on highly directional internal interactions, such as spins in a
solid, this is particularly true. Consider for a moment the magnetic excita-
tions we have just been studying. They can occur in a lattice of any dimension
d. If they have a dispersion relation of the form 𝜔k = akn, where n is any
number and “a” is a simple prefactor, then show that the specific heat of the
solid can be written as ∼Td/n. Explain why this is.

6 Rough Estimates: Consider a single component ferromagnet. Let’s say that the
crystal structure is FCC and it has a lattice constant of 0.35 nm. Further we
will suppose that each atom contributes an orbital moment of 2𝜇B.

(a) Using any method above you choose, estimate the magnetization of this
system?

(b) Relate this magnetization to a surface current density.

7 Frames of Reference: This problem will require you to remember a little of your
special relativity. Recall that we have previously introduced the Lorentz force
in the Hall effect. However, let’s now consider an electron with a spin moving
under the influence of an applied electric field E. Consider the situation in
which the electro travels ballistically and the spin is initially aligned with the
direction of motion.

(a) Show that the magnetic field seen by the electron in the frame in which
the electron is not moving is given by

B∗ = −(1∕c2 )v × E
(b) Show that this leads to a nutation of the electron spin about the E axis.

This is known as the Rashba effect.
(c) While this is true for an electron in a solid or in an electron beam, it does

have implications for spin orientation of a flowing current in a solid. What
are these implications?
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12

Polarization of Materials

When we presented electronic transport in solids, discussion centered on
degenerately doped semiconductors and metals. “Well of course” the astute
reader may cry. “After all, it is pointless to study fields placed across insulators
where nothing will happen!” But in actual fact something generally does happen:
polarization of the crystal. And this happens not only in fully insulating,
covalently, or ionically bonded solids but also in some semiconductors. Indeed,
in any solid for which a local electric field, Eloc, at the atomic/molecular scale
can be established, some level of polarization can result.

Clearly, where there are many itinerate electrons free to move around, estab-
lishing a local field is difficult. Most fields internal to the solid will be canceled
by the motion and accumulation of macroscopic charge distributions. Therefore
not much polarizes in things like metals. But in insulators and semiconductors
with a low carrier density, polarization can be large and very useful.

Polarization is literally the rearrangement of local bound charge to form a
multipole field in response to the applied local field. It is typically characterized
by a response field: p microscopically and P macroscopically. Because opposite
charges attract, the response field that is established typically opposes the local
applied field, thereby reducing the net total electric field in the solid by some
amount.

12.1 Simple Atomic Models

So how do we get P from p, and how do we get p to begin with? In the case of
an insulator, an electric field placed across the volume will establish a force that
rearranges charge distributions at the atomic or molecular level in a solid. This
can happen in many ways:

1. Electrons are perturbed from their orbits around ionic cores to make a asym-
metric charge distribution.

2. Polar molecular components of the lattice rotate their orientation to anti-align
with the applied field.

3. In ionic lattices (like alkali halides or salts), the ions can displace to form
dipole-like fields that anti-align to the applied field.

4. Charge can accumulate at interfaces in materials: interface polarization Pint.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 12.1 Schematic representations of the induced dipole (a) and the permanent dipole
that is reoriented in the applied field (b).

Actually, (2) and (3) are similar ideas. So we could break “mechanisms” into
induced polarization at the atomic/molecular level and ionic displacement mech-
anisms within the lattice. Indeed, polarization is likely to be a combination of all of
these effects (or some variants). The two we will consider as dominant are shown
in Figure 12.1.

12.1.1 Linearity in the Response

A typical simplification is a dipole-like nature local response field to the local
applied field. The actual structure of the field near the atoms or molecules is obvi-
ously more complicated [1]. However, in a multipole expansion of local response
fields, charge neutrality insists the monopole term is zero, so the dipole term
tends to dominate field structure.

As the dipolar field structure is a simplification, so too is the strength of the
response to an applied field. We can expand this in a power series:

|p| ∼
∞∑

i=0
ai|E|i (12.1)
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The proportionality shown is written with the total resultant macro-field E,
not the field that established p. Recall that D is only like this establishing field
(displacement field) [2]. Eloc can also be used in the expression, but this atomically
local field is a composite of applied fields and resulting charge shifts. It is not easy
to know. However, as vector fields, they are related additively. For small “fields”
(D) in many materials, p is nearly linear with the applied local fields (Eloc) and
thus the total resultant field (E). We have cleverly named such a medium a linear
medium.

Thus, we can write p in a linear response framework: p = 𝛼E. 𝛼 is the atomic
polarizability, and it is exactly the propensity of each of the atomic building
blocks to create a local dipole p in the field E. Note that E in the equation
represents the total resultant field, which we will claim is related to the local field
Eloc. Eloc is shown in Figure 12.1:

P =
N∑

i=1
pi =

N∑

i=1
𝛼iEloc,i

Eloc, i is the local field at the ith lattice position.
Eloc is related to E (the total resultant macro-field):

Eloc = E + P
3𝜀0

is the Lorentz relation (from crystals of cubic symmetry)

Thus,

𝜒

𝜒 + 3
= 𝜀 − 1
𝜀 + 2

= 1
3𝜀0

N∑

i=1
𝛼i

which are the now famous Clausius–Mossotti relations.

𝜒e =
N𝛼∕𝜀0

1 − N𝛼∕3𝜀0

𝛼 =
3𝜀0

N

(
𝜀r − 1
𝜀r + 2

)

Or these can be written a little differently so as to highlight the proportionality
constants. (We have now worked the sum for identical lattice sites, changed to 𝜀r
from 𝜀, and added the subscript e to 𝜒 to remind us that this is atomic.)

Naturally, we imagine that all the small dipole fields associated with each
differential unit of volume (or unit cell) of the material add together under the
anti-aligning influence of some applied field. This results in the macroscopic
material’s response to the said field as is seen in Figure 12.2. This simple polar-
ization model suggests that if we have a dipole density of, say, N dipoles per unit
volume with a dipole strength of p, then we would observe a polarization per unit
volume of approximately P =N , p = 𝛼NE. So we might assume that 𝛼 and 𝜒e are
related as 𝜒e = N𝛼/𝜀0. For a very diffuse N , this is a pretty good approximation
in fact. Unfortunately, we have a self-consistency problem as N becomes denser.
The equation we used above to state the linearity of p with E fails to illuminate
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Figure 12.2 Regardless of how the dipoles come to be formed, when they align, they will be subsequently randomized by thermal energy from phonons.
Further their alignment will either be symmetric wherein all the dipole density is constant and the applied field is a constant, or they will align with gradients
in density or field, leading to the so-called bound charges.



12.1 Simple Atomic Models 507

the effects of the dipole that we are polarizing on that effective field. In other
words, when we polarize some atomic element within the volume, the field
from that element adds to the fields of the other elements. This changes the E
that made our polarized element to begin with. So everything must be allowed
to relax into some lowest energy state in a self-consistent way. This is actually
derived in nearly every text on electromagnetism that exists. So we will simply
state the result here. These are known as the Clausius–Mossotti equations.

This combined response quantity of all the p’s goes into the makeup of the
macroscopic 𝜀, as does in the case of some semimetals and semiconductors, any
itinerate charge1 or bound charge associated with any material’s polarization.
Let’s just remember that bound charge distributions in polarized media are
typically associated with surfaces wherein the dipoles terminate, leaving an
unbalanced charge exposed, and with gradients in the local dipole density.
Recall that

𝜎b = P ⋅ n (surface bound charge density) (12.2)

𝜌b = −∇ ⋅ P (volume bound charge density) (12.3)

Importantly, such bound charge densities can occur near buried interfaces,
grain boundaries, and other inhomogeneities within the solid. Because of nonsto-
ichiometric local environments at such grain boundaries and interfaces, induced
polarization can take place there as well. These two additional mechanisms were
mentioned above (number 4 in our list) but can produce spurious results when
simple methods are used to determine 𝜀 for a given material.

12.1.2 Relating the Fields

It is common to see the macro-response field P, written in terms of the
material-based bound macro-charge distributions and related to the resultant
total field in the medium (see Figure 12.3). Using our auxiliary field (D), we
write the standard expression from E&M relating P and E:

D = 𝜀0E + P (12.4)

where P is generally derived from microscopic details of local fields within the
solid as above. Again, this is general for dielectrics. We must have some knowl-
edge of the type of material (semiconductor, metal, or insulator) to construct and
solve Maxwell’s equations for a specific problem. This idea is shown in Figure 12.3.
Notice that we have included the bound and free charge densities 𝜎bound/free and
𝜌bound/free as well as the polarization field P defined only up to the boundaries of
the material in typical E&M style.

Classically, P is defined in a macroscopic way and represents a macro-response
to an unspecified applied field. When we come to microscopic derivations of P,
life is not so simple since the way in which charge in the microenvironment is
paired can leave the precise definition of P slightly ambiguous [3]. That is why
classical approaches tend to treat the solid’s properties in terms of phenomeno-
logical parameters: 𝜀, 𝜇, and 𝜎.

1 Itinerate charge is mobile charge within the unfilled band of a solid.
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Figure 12.3 The basic breakdown of static dielectric response for different materials from the
insulator to a metal is shown. Here we have used Maxwell’s term “displacing field” for D, but
this is slightly inaccurate since D doesn’t represent a “real field.” It is only like the generating
field. Remember also that P is not really found in the metal (where the response is NOT from
microscopic dipoles) and is only defined internally for the insulator.

Then, P= 𝜀0𝜒eE for linear dielectric response where 𝜒e is what is known as the
susceptibility. Using the expression above,

D = 𝜀0E + P= 𝜀0E + 𝜀0𝜒eE = 𝜀0(1 + 𝜒e)E (12.5)

𝜀 ≡ 𝜀0(1 + 𝜒e) (12.6)

𝜀r ≡ (1 + 𝜒e) = 𝜀∕𝜀0 (12.7)

D = 𝜀E (12.8)

𝜀r (or sometimes 𝜅) is known as the relative permittivity, and it can be used as a
comparative standard.

It is plain to see that the density of dipoles and the dipole strength will play
an important role in determining the macro-field associated with polarization
response. Remember too that the |p| = qx where q is the displaced charge and x
is the actual displacement. So when we run across a table like that of Table 12.1,
it can be placed into context.

Curiously, note the extraordinarily large value found for the perovskite
BaTiO3. This is actually not that uncommon for perovskites (ABX3) and is found
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Table 12.1 The relative permittivities for
several substances.

Material k

Air ∼1
Polystyrene 2
Polyester 4
Mica 5
Alumina 9
Polyvinylidene fluoride (PVDF) 10
Inorganic glasses 6–20
Distilled water 80
Rutile 80–170
Barium titanate 7000

in CaTiO3, PbTiO3, PbZrO3, etc. Such materials are of technological importance
not only for their dielectric response, but also many of them have piezoelectric
and pyroelectric properties. Why should this be? If the reader refers back to the
structure of this system, you will recall that the smallest cations (Ti4+) occupy the
octahedral interstices. The other cations (such as Ba2+) occupy the dodecahedral
interstices. This yields two situations in the crystal: (i) a high density of dipoles
and (ii) the cations are able to move around in their interstices more freely than
normal, so the dipoles can be larger.

12.2 Temperature Dependence

There are, of course, some caveats associated with this anti-alignment when the
atomic or molecular sites are already polar (as in the second example above).
This is due to temperature and randomization. Specifically the dipoles are not
perfectly aligned but are distributed about the E axis as a Langevin function, as
we might expect in a heat bath.

We can detail this point a little further as below. Note that it follows essentially
the same route as it would if this were spins sitting in a magnetic field, so it is a
good idea to get a good picture in your head as you will use it again. Quite sim-
ply the internal energy of an ensemble of these dipoles is largest when they are
all aligned and smallest when they are all anti-aligned. For a single dipole this
is expressed as the dot product shown. But each of the dipoles in the ensemble
will “feel” different perturbations from the flow of phonons through the system,
transferring heat. The thermal average will be the probability of finding a p point-
ing antiparallel. We thus use this probability to estimate the total energy of the
system at temperature. This is not entirely accurate since we have not accounted
for the effects of the dipole field itself. But it is a useful estimate.
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Interaction energy: U = −p ⋅ Eloc
The probability of finding a dipole p(𝜃) oriented at angle 𝜃 to the field is given by

Boltzmann:

p(𝜃) ∼ e−U∕kBT = e[(pEloc cos 𝜃)∕kBT]

We have ignored nearest neighbor interactions in this equation. Technically, this
is only for very diffuse dipoles like in a gas. But it will give us a little guidance
anyway.

The average component of the dipole moment parallel to the field:

p∥ =< p cos 𝜃 >

The thermal average:

= p
∫
π∕2
−π∕2 cos 𝜃 exp[(pEloc cos 𝜃)∕kBT] 2π sin 𝜃 d𝜃

∫
π∕2
−π∕2 exp[(pEloc cos 𝜃)∕kBT]2π sin 𝜃 d𝜃

= p(coth x − 1∕x) = pL(x)

L(x) is the Langevin function.

12.3 Time Dependence: 𝜺(𝝎)

Our reasoning so far has been based on a static field approximation. Within the
solid, the field is applied, and the dipoles respond adiabatically. However, it is
surely more reasonable to suggest that it takes some time for the dipole to respond
in the instant that a field is introduced. Likewise it is reasonable to assume that if
the field is quickly removed, there exists some restoring force that allows the sys-
tem to relax back into its nonpolarized form. This time-varying field is exactly the
kind of situation we find ourselves in when an electromagnetic wave propagates
through the solid or if we drive the material with a high frequency AC field. The
electric field drives a polarization in one direction and then in the other, going
through zero field as it completes a driving cycle. If the p is the result of a driven
oscillator, then 𝜀= 𝜀(𝜔) since the response of a driven oscillator typically depends
on the natural frequencies of the system and the driving frequency.

There is a famous and rather simple model for this polarization cycle, taken
from classical mechanics.2 It is based on the driven harmonic oscillator. The elec-
tric field of the E&M wave is the driver: ∼qE0ei𝜔t . The displaced charge has a
restoring force linear with displacement magnitude (stretched bonds as springs,
for instance). When the applied field goes through zero, the electrons will ring
back and forth about the ionic core (it too may move depending on the situation).
If we turn the field off altogether, we suspect that the polarization will return to a

2 Note that this model is written and described in terms of induced polarization. There are
equivalent ways of treating the rotation of molecules that are already polar.
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Pnet = 0 state eventually. To get our model to do this, we add in a damping term:
−m𝛾 dx/dt.

The micro-dipole goes as |p| = qx(t), and it is the x(t) that we seek from a
dynamics point of view. So we do a little Newtonian manipulation as seen in
Figure 12.6. Physically the damping term can be ascribed to different mechanisms
from radiation damping to the small effects of the magnetic field (Lorentz force).
The charge and distance components are related to whichever mechanism we are
discussing: induced polarization, ionic motion, etc.

Starting with a polarized driver,3 we write the force and the solution to the
damped harmonic oscillator equation (Figure 12.4) in complex notation

x̃(t) = x̃0e−i𝜔t (12.9)
The displacement is complex, and its real part expresses the real displacement

of charge. If we substitute this solution into our classical, driven, simple harmonic
oscillator differential equation,

x̃0 =
q∕m

𝜔
2
0 − 𝜔2 − i𝛾𝜔

E0 (12.10)

p̃(t) = qx̃(t) =
q2∕m

𝜔
2
0 − 𝜔2 − i𝛾𝜔

E0e−i𝜔t (12.11)

The basic mechanical

model for dipolar

response in a

time-dependent driving field

The charge that forms the dipole

A damping force: –mγ dx/dt

x

v

z

E(z,t)

m + +mγ mω0
2x = qE0 cos (ωt)

d2x dx

dtdt2

This model gives rise to a simple differential equation for motion: the driven, damped

harmonic oscillator

kspring

e–

γdamping

An electromagnetic restoring force: F = –kspringx

Figure 12.4 The mechanical model for a driven dipolar response in materials along with the
resulting differential equation of motion it produces. This old and familiar differential equation
relates the driving frequency 𝜔 to the response frequency (natural resonance) of the
system 𝜔0.

3 Polarized in the sense of the direction of the electric field. We use the same word for this and the
polarization of the dipoles unfortunately.



512 12 Polarization of Materials

This introduces a natural response frequency into the system: 𝜔0. It is the fre-
quency that p “rings” with when there is no driving force.4 The driving force of
the applied field has a frequency of 𝜔. Since any material might be made up of
more than one type of bond or more than one type of atomic site, we may safely
assume that there will be some number of these resonances indexed here by j. f j
has been introduced as a weighting factor to account for the proportion of the
total that is represented by each resonance:

P̃ =
Nq2

m

(
∑

j

fj

𝜔
2
j − 𝜔2 − i𝛾j𝜔

)

Ẽ (12.12)

P̃ = 𝜀0𝜒eẼ (12.13)

Using the additive field equation, we would assign the complex 𝜀 the value

�̃�r = 1 +
Nq2

m𝜀0

∑

j

fj

𝜔
2
j − 𝜔2 − i𝛾j𝜔

(12.14)

It would seem that our dielectric is a function of𝜔, and that function has “poles”
around the natural resonances of the material. The damping constant can play a
rather large role in how 𝜀 behaves, and it can be dominated by any number of
mechanisms as we will see.

If the driver is an E&M wave, then the velocity of that wave in this medium
depends on 𝜔 now, with 𝜀 = 𝜀r𝜀0. For monochromatic plane wave solutions, the
change in 𝜀(𝜔) with frequency leads to a convolution of real and imaginary parts:

Ẽ(z, t) = Ẽ0e−i(k̃z−𝜔t) (12.15)

k̃ ≡
√
�̃�𝜇0𝜔 (12.16)

k̃ = k + i𝜅 (12.17)

Ẽ(z, t) = Ẽ0e−𝜅ze−i(kz−𝜔t) (12.18)

𝛼 ≡ 2𝜅; n = ck∕𝜔 (12.19)

From this it is typical to define an extinction or attenuation coefficient (𝛼) as
well as the index of refraction (n). The 𝛼 term describes the loss of field near the
resonance, and the n describes the slowing of the wave as it moves forward.

However, it is plotting out the dielectric or its associated functions such as
𝛼 and n that really shows what these poles on the 𝜀r equation do. As seen in
Figure 12.5, we have chosen to show 𝛼 and n because these are most commonly
measured as a function of 𝜔, but certainly one can see that the 𝜀 curve would
be consistent.

4 We should be a little careful here; we are still talking about a quantum system, and the distortion
of the electron orbit does not represent a true eigenstate of the unperturbed system. A classical
system “rings.” It isn’t entirely clear what the quantum system does. But we are going to go with it
since we know from experience that this works.
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Figure 12.5 The response of the system as a function of 𝜔.

12.4 A Familiar Equation in Optics

We can put this into a form that the reader may have already seen in an optics
class. Starting with our complex wavenumber,

k̃ = 𝜔

c
√
�̃�r ≅

𝜔

c

[

1 +
Nq2

2m𝜀0

∑

j

fj

𝜔
2
j − 𝜔2 − i𝛾j𝜔

]

(12.20)

and solving for n and 𝛼, we get

n = ck
𝜔

≅ 1 +
Nq2

2m𝜀0

∑

j

fj(𝜔2
j − 𝜔

2)

(𝜔2
j − 𝜔2)2 + 𝛾2

j 𝜔
2

(12.21)

𝛼 = 2𝜅 ≅
Nq2

𝜔
2

m𝜀0c
∑

j

fj𝛾j

(𝜔2
j − 𝜔2)2 + 𝛾2

j 𝜔
2

(12.22)

Assume a relatively low density of dipoles and weak damping:

n = 1 +
Nq2

2m𝜀0

∑

j

fj

𝜔
2
j − 𝜔2

(12.23)

Taking

1
𝜔

2
j − 𝜔2

= 1
𝜔

2
j

(

1 − 𝜔
2

𝜔
2
j

)−1

≅ 1
𝜔

2
j

(

1 + 𝜔
2

𝜔
2
j

)

(12.24)

we get

n = 1 +

(
Nq2

2m𝜀0

∑

j

fj

𝜔
2
j

)

+ 𝜔2

(
Nq2

2m𝜀0

∑

j

fj

𝜔
4
j

)

(12.25)

which reduces to the equation in optics describing dispersion:

n = 1 + A
(

1 + B
𝜆2

)
(12.26)
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12.5 Understanding the Context

What does this all mean? Remember when we said we would return to that damp-
ing constant? In fact, damping and polarization times are our “looking glass” into
physical mechanisms of polarization. We really should expect a few specific fea-
tures of the polarizing systems (dielectric or semiconducting):
1. Accumulation of charge at interfaces is likely to be quite slow among our

list of potential mechanisms. So we should see Pint contributions to Pnet
only at the lowest frequencies. Moreover, as the driving frequency increases
beyond the time frames needed for full charge saturation at the interfaces, the
dielectric response would simply drop as is seen in the first step of Figure 12.6
unlike that seen in Figure 12.5.

2. Similarly, the torsional rearrangement of permanent dipoles needed for the Pd
mechanism in the lower part of Figure 12.1 will be slow, and it too will have
a saturation value above which we will observe a simple drop-off in dielectric
response. Remember that such a mechanism would be dependent on temper-
ature and saturation should represent full anti-alignment.
By analogy, the two mechanisms above might be seen as critically damped sys-
tems mechanically.

3. However, ionic motion and electronic induced polarization are both far more
local; they induce less local strain on the lattice, and they are far quicker than
the first two mechanisms. The ionic motion is, of course, slower than the
electronic polarization by virtue of the mass of the moving object. By analogy
again, we might suggest these mechanisms to be under-damped mechanical
systems, thereby yielding resonance phenomena at specific frequencies. The
“spikes” in dielectric function, index, and attenuation as the resonance is
approached, as in Figure 12.5, are typical of such a mechanical system.
We might construct a graph (Figure 12.6) using this simple mechanical model,
changing the masses, the 𝛾 ’s, and the 𝜔’s, to accommodate differences in the
mechanisms we have been discussing.

One could argue that we are just applying a mechanically driven oscillator
system to anything we might find a resonance for in the solid, and this is surely
the case. But, in fact, it is rather useful.5 Certainly, there are more sophisticated
approaches to each of these different mechanisms for polarization that specialists
in the field use. But their starting point is inevitably our mechanical oscillator.

12.6 The Dielectric Function and Metals

In the case of a metal, surely the idea of a dielectric response of a metal seems a
little ridiculous – there is nothing to polarize in the sense of our picture presented

5 In actual fact, for any given field of physics, there are only a few problems scientists can work out
in closed form. For kinetics the simple harmonic oscillator is one of those. The trick is to find a way
to make every mechanics problem a simple harmonic oscillator problem.
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Figure 12.6 Different response times from different mechanisms result in resonances across
the frequency spectrum. The first two steps, Pint (for interfaces) and Pd (for alignment of
permanent dipoles), don’t really “look” like resonances but rather like limiting cutoffs for
response, whereas the other two do. In the analogues of a mechanical oscillator with damping,
we might say the first two are critically damped (depending on the number of free charge and
density of the dipoles) and the latter two are under-damped.

above. When the electrons are free, they go wherever they want as fast as they
want, right? This presumably means that there are no internal local fields due to
charge accumulation on the material’s boundaries (canceling the external source
of field altogether), and so nothing happens to the atoms.

This is certainly reasonable for an applied static E or B field, when a
time-dependent AC field is applied, such as in the case of an E&M wave, an
electron gas can certainly have a “polarizing” response. Why? It is simply because
if the frequency is high enough and the time scales are short enough, full charge
accumulation is never fully achieved. Moreover, we have addressed this already
in Chapter 10 where we apply the very same mechanical oscillator model to
come up with plasmons. That section could have just as easily been added here
instead of there.

12.7 Piezoelectrics, Pyroelectrics, and More

Clearly, crystalline or semicrystalline solids with noncentrosymmetric unit
cells can have permanent dipoles associated with those unit cells. And, when
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permanent dipoles exist within the solid, their collective behavior can be
hidden by randomization, driven by the surrounding heat bath or accumulated
surface and volume charges. As we have seen an applied electric field can align
these dipoles, yielding a substantial dielectric response. But there can be other
mechanisms that align the dipoles as well. Since such effects are widely used
and studied intensively in solid-state physics labs, this might be a good place to
mention them. Note, however, that there exist many specialized texts for these
topics, and so we will introduce only the essentials here.

Piezoelectric systems have a curious aspect of their crystal symmetry in that
if they undergo distortion in one or more of the principle directions of the lat-
tice, the dipoles will align, giving rise to a polarization: P. This could of course
happen for a number of different mechanical reasons. Shown in Figure 12.7 is a
typical unit cell for the class of piezoelectrics known by its most famous member
PZT. The Curie temperature, Tc, mentioned in the diagram is the temperature
at which the electrostatics in the system allows it to fall into a minimum energy
configuration that has a dipole moment. Above this temperature, the system is
cubic. Notice that the crystal is constructed of a ridged set of bonds, cantilevered
off in various directions. While the dipoles can be arranged up or down under the
Tc, when pressure is applied along one crystal axis, the dipoles will align, giving
a macroscopic P.

Above the Curie

temperature Tc, many of

these crystals have a

cubic symmetry in the

arrangement of the

positive and negative

charge

A typical crystal structure such as PZT, for piezo-active materials

But, below Tc, the crystal is

tetragonal (orthorhombic)

and has an electric dipole

A2+ = Pb, Ba, etc. (large, divalent metal ion)

O2– = oxygen

B4+ = Ti, Zr, etc. (smaller, tetravalent metal ion)

Figure 12.7 The piezo-active crystal PZT (and its family) shown in its cubic and tetragonal
forms.
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The direct piezo effect is given by
P = d𝜎 (12.27)

(Electric polarization)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(C∕m2)
First rank vector

= (Piezoelectric coefficient)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(C∕N)
Third rank tensor

(Mechanical stress)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(N∕m2)
Second rank tensor

There is also an inverse effect wherein a field is applied that leads to internal
strain:

𝜀 = dE (12.28)

(Mechanical strain)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(Dimensionless)
First rank vector

= (Piezoelectric coefficient)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(m∕V)
Third rank tensor

(Electric field)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(V∕m)
Second rank tensor

As would be expected, the effect is strongly dependent on the direction the
force is added and the crystal directions.

Written in a tensor, like indices are summed and they correspond to crystal
directions. Hidden within the “d” coefficients are the mechanisms responsible for
the alignment in a given crystal system and their magnitudes. Such coefficients
usually require detailed atomistic models to unravel:

Pi = dijk𝜎jk (12.29)

𝜀jk = dijkEi (12.30)
We can get a little more insight into the relations between polarization and the

work of deformation from the first law of thermodynamics:
dU = 𝜎ij d𝜀ij + EkdPk + T dS (12.31)

The middle term is the electric work done internally to the crystal. The Gibbs
free energy is given as

G = U − TS − EkPk + 𝜎ij𝜀ij (12.32)

dG = −𝜀ij d𝜎ij − Pk dEk − S dT (12.33)
The Gibbs energy is used as the state function because the system is defined

completely by 𝜎, E, and T , where

dG =
(
𝜕G
𝜕𝜎ij

)

E,T
d𝜎ij +

(
𝜕G
𝜕Ek

)

𝜎,T
dEk +

(
𝜕G
𝜕T

)

𝜎,E
S dT (12.34)

𝜕G
𝜕𝜎ij

= −𝜀ij;
𝜕G
𝜕Ek

= −Pk;
𝜕G
𝜕T

= −S (12.35)

This allows us to enumerate several different effects that will be found:
𝜕

2G
𝜕𝜎ij𝜕Ek

= −
𝜕𝜀ij

𝜕Ek
Converse piezoelectric effect (12.36a)

= 𝜕
2G

𝜕Ek𝜕𝜎ij
= −

𝜕Pk

𝜕𝜎ij
Direct piezoelectric effect (12.36b)
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𝜕
2G

𝜕𝜎ij𝜕T
= −

𝜕𝜀ij

𝜕T
Thermal expansion coefficient (12.37a)

= 𝜕
2G

𝜕T𝜕𝜎ij
= − 𝜕S

𝜕𝜎ij
Piezocaloric effect (12.37b)

𝜕
2G

𝜕Ek𝜕T
= −

𝜕Pk

𝜕T
Pyroelectric coefficient (12.38a)

= 𝜕
2G

𝜕T𝜕Ek
= − 𝜕S

𝜕Ek
Electrocaloric effect (12.38b)

We have discussed the piezo-response and its converse above. Thermal expan-
sion was discussed in the chapter on phonons. However, for such crystals, we have
three new effects that can be observed: piezocaloric, which is like the inverse of
thermal expansion for a piezo-crystal, and the coupled pair of pyroelectric and
electrocaloric effects. Again the last two are like inverses of each other.

The pyroelectric response in piezo-materials is the change in the macroscopic
polarization vector with a change in temperature. Usually this is written as

ΔP = piΔT (12.39)

The pi is called the pyroelectric coefficient and it does depend on crystal orien-
tation.ΔP is a vector whileΔT is the change in temperature. Its inverse, the elec-
trocaloric effect, would suggest that changing the polarization by the application
of a time-dependent electric field would change the temperature of the system.
Indeed, the electrocaloric effect can be rather subtle and has been observed in
piezo-active polymers such as polyvinylidene fluoride (PVDF) and its copoly-
mers [4].

12.7.1 The h-BN Example

Of course our presentation here has dealt with three-dimensional, standard
materials. What is the effect of dimensionality on such piezo/pyroelectric
behavior? A good example of this is found in atomically thin sheets of hexagonal
boride: h-BN. Shown in Figure 12.8 is such a sheet of h-BN, and you will notice
that it is noncentrosymmetric in plane.

We might expect that such a crystal structure would yield a piezo-response.
However, due to its threefold symmetry and the fact that it is completely flat,
it shows no in-plane or out-of-plane dipoles to align. Recall that we discussed
earlier that threefold symmetries can lead to frustrated ordering. Yet there is a
simple way to alter this situation. If hydrogen or fluorine is introduced to the
h-BN sheet, binding to the lattice sites of the crystal, the flatness is distorted, and
an out-of-plane dipole is formed. This two-dimensional system becomes quite
impressively piezoelectric [6].
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Figure 12.8 Arranged similarly to graphene, h-BN forms a hexagonal sheet of atoms.
However, there is a broken symmetry since the A and B sublattices of the graphene structure
are occupied by two different kinds of atoms. Notice also the alteration of double and single
bonds among the B and N atoms. Sheets of h-BN as well as nanotubes of the material are now
easily synthesized [5].

12.8 Summary

Electromagnetic fields can strongly couple to both insulators and (for AC fields)
to metals through the polarization of the lattice. As we stated above, semicon-
ductors will lie somewhere in between these two (with some nuances that are dis-
cussed in the next chapter). A simple phenomenological model of aligning dipoles
and mechanical oscillators can be used as a good starting point for understanding
the temperature and frequency dependencies of these polarization phenomena.

In materials that have a permanent dipole moment due to crystal structure,
the Gibbs state function has provided some guidance as to how macroscopic
polarization and stress–strain constraints are linked. This added level of com-
plexity can make a detailed understanding of the effects of such internal local
fields very difficult. Yet we are able to extract some predictive phenomenological
statements in such systems through the use of simple atomistic models. Impor-
tantly, our understanding of such effects is not hampered by dimensionality. As
we have demonstrated low-dimensional structures such as the polymers of PVDF
and the h-BN sheets can both express symmetries that lead to piezo-response.

Exploring Concepts

1 The Onsager Relations: In Section 12.7 we introduce a thermodynamic
approach to inverse (or complementary) processes for such noncentrosym-
metric systems as piezoelectrics. This is why the section was included in
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S = entropy

dS = dU +
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T = temperature
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p = pressure

Fj = the Jth generalized driving force

Xj = the Jth generalized flux

μi = the chemical potential of particle population i
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Figure EC12.1 The system is defined by thermodynamic entities as seen. But these vary across
the volume and through time. They lead to a nonequilibrium-based flow of entropy in system
to equilibrium. In transport, polarization, piezoelectrics, etc., our question is: what happens to
this relaxation when a force (a field of some kind) is placed across the system?

this chapter. However, the thermodynamic driving forces and current fluxes
we describe are far more general, so if we are a little more careful, we can
make this approach (and this exercise) also of relevance to the chapter on
transport (Chapter 8).
Consider a thermodynamic system, not necessarily in equilibrium. The idea
is shown in Figure EC12.1.
To answer this, recall that the first law of thermodynamics can be stated in
terms of the entropy state function:

T 𝜕S
𝜕t
= 𝜕E
𝜕t
− 𝜇𝜕N

𝜕t
And we define two specific kinds of currents in the system – particles and
energies:

JN = Nv (partial current)
JE = EJN∕N (energy current)

yielding two conservation equations
𝜕N
𝜕t

= Δ ⋅ JN

𝜕E
𝜕t

= Δ ⋅ JE = F ⋅ JN

F is this external set of forces added to the system as shown in Figure EC12.1.
They can be an applied electric field to a system of charge, an applied magnetic
field to a system of currents, etc.



Exploring Concepts 521

If we combine all of this through that first law,

T 𝜕S
𝜕t
+ Δ ⋅ JE − 𝜇∇ ⋅ JN = F ⋅ JN

And this relationship is important because it says for such processes as we
are discussing that the rate of entropy and heat generation in this relaxation
is given as

dS
dt
= 𝜕S
𝜕t
+ ∇ ⋅

[ JE − 𝜇JN

T

]
=

F ⋅ JN

T
− ∇

(
𝜇

T

)
⋅ JN + ∇

( 1
T

)
⋅ JE

and
dQ
dt

= T
V

dS
dt

If our force is the Lorentz force, for example, −eE− ev/c2xB,
dQ
dt

||||Lorentz
=
[
−eE − ∇𝜇 − ∇ ⋅ T

T
(E − 𝜇)

]
⋅

JN

V
These serve as a sort of continuity equation for entropy and suggest an
important aspect we didn’t cover in transport or in dielectric response.
When fields are applied to systems of electrons, phonons, magnons, or
whatever, the response of the system is in keeping with the creation, flow, and
conservation of entropy. This means that applied fields and flowing currents
come along with changes in thermodynamic entities such as temperature,
generally.
But there is more. In general we associate a flux (a movement or current of
something) with each force applied:

Xj =
d

dFj
[𝜕Q∕𝜕t]

(a) Take the force to be an applied electric field. Show that its corresponding
(or conjugate) current is the electrical current.

(b) Take the force to be a temperature gradient. Derive and discuss the mean-
ing of this flux.

If there are numerous forces that are applied to the system, as is typical, and
if they are reasonably weak (in the regime of linear response – this means the
current responds to the force linearly), then some rather nonobvious results
are accomplished. This is when temperature gradients lead to electrical field
and other “cross effects” are observed. Consider the linear response form

Xi =
∑

j
LijFj

These coefficients actually correspond to the physical coefficients for the
physical phenomena we have grown to know and love: resistivity in the case
of E-forces, the piezo-constants in the case of applied pressures, and so on.
But notice that these coefficients do not have just diagonal nonzero elements
in a matrix and that Lij relates the flux of j in response to the force i.
The Onsager relations relate these coefficients and in doing so relate spe-
cific conjugate behaviors physically. As a result of a system’s microscopic
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reversibility in the thermodynamic sense, the relations explain why physical
processes in the solid state, such as the Seebeck effect, have a conjugate
process, the Peltier effect. They are stated as

Lij(B) = Lji(−B)

Here we have stated it in terms of the B field, which enters into the force
equations as a pseudo-vector, and thus in time-reversing systems with B
fields, one must include a negative sign. So too must this be done with the
linear response coefficients. More importantly, there are some conditions for
which the Onsager relations do not work, but generally they are a statement
about symmetry and conservation.
Exercises (a) and (b) deal with only one force and flux in the system. Now let’s
look at the two so that we can understand the cross-coupling:

(c) Following along our presentation of the thermoelectric effect from the
transport section, translate this into the language of the Onsager expres-
sions. Identify the two generalized thermodynamic forces and the subse-
quent current fluxes. Construct a matrix of {L} with these two forces, and
show that Onsager’s expression holds true for thermoelectrics. You may
need a little outside reading for this.

2 Quartz: As it happens, quartz, the crystalline form of SiO2, is quite a techno-
logically important material. It is strongly piezoelectric in nature.

(a) We make watches from the stuff, and it is used as a timing mechanism. Do
a little background reading (Walter Caddy might be a good place to start),
and describe how you would use a quartz crystal to keep time.

(b) Large quartz deposits have been used to explain ghostlike lights that
appear over some mountains (like those of Brown Mountain in NC,
USA). How do you think this might work? [Joe Nickell, The Brown
Mountain Lights: Solved! (Again!), Skeptical Inquirer Volume 40.1,
January/February 2016].

3 Electrocalorics: The electrocaloric effect is actually the inverse of the pyroelec-
tric effect in the same way that the Seebeck effect is the inverse of the Peltier
effect (see Exercise 12.1). Thus, whereas a time-dependent temperature gra-
dient can give rise to an electric field, so too can an electric field give rise to
a temperature gradient in time. Using the thermodynamic entities described
above:

(a) Identify and describe the thermodynamic forces and flux currents in this
conjugate pair of phenomena.

(b) Describe a cooling cycle as a heat engine based on this effect. You may
need to go to the literature on this one for a little help.

4 Nanometals: We have discussed the dielectric response of isotropic and
homogeneous materials and have used the charge separability of the atom
or molecule’s electrons and nuclei as the source of dipolar fields. Imagine
now that we have a composite material. Instead of being made up of pone
polymer or ceramic, it is instead made up of a highly insulating polymer host,
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and it has well dispersed throughout its volume gold nanoparticles of around
∼10 nm in diameter. The thickness of our film is more than 1𝜇m, and using
a good deal of microscopy, we have determined that none of the little metal
spheres of Au touch each other.

(a) Using the model we have established above as a guide.
(b) Suggest a way of estimating the overall dielectric response of such a mate-

rial.
(c) Compare the results of this estimate with the same host polymer but with-

out the NPs.
(d) Finally describe the frequency response you might expect from this sys-

tem. How might this change as the average diameter of the particles gets
larger?

5 Transistor Dielectrics: We discussed the structure and function of organic
thin-film transistors (OTFTs) in a previous chapter, so to do this exercise
you will need to look back a bit. Often, such devices have relatively thick gate
dielectrics with a capacitance per unit area of typically less than 100 nF/cm2.

(a) This means that OTFTs often require relatively large gate-source voltages
of about 10 V or more to work. Why? Write an expression that relates the
on–off channel voltage in terms of the applied gate voltage and its dielec-
tric constant and thickness.

(b) For many applications in mobile devices, where small batteries are used,
significantly lower operating voltages are needed. This usually means
going to thinner dielectrics with higher dielectric constants. There are two
main ways to do this. The first is to make high dielectric polymers, and
the second is to use composites. Using a literature search, describe both
of these approaches with details as to the actual material compositions.
(You might find the work of Dr. H. Klauk useful here.)

(c) What do you anticipate the effects of these approaches might be on the
frequency response of the devices? Why?
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There are several ways to view light’s interaction with solids. We can think of
discrete photons interacting with a collection of quasiparticles in a way analogous
to particle–particle scattering. The Feynman diagrams above encourage this
view. Alternatively, a classical picture can emerge wherein the time-dependent
response of the solid to an incident electromagnetic field is considered through
Maxwell’s equations. Then, many-body models for electrical polarization,
electron–electron interactions, etc. are applied through the interaction volume
in place of quasiparticles.

Foundations of Solid State Physics: Dimensionality and Symmetry, First Edition.
Siegmar Roth and David Carroll.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Naturally, according to the correspondence principle, these pictures are equiv-
alent, so either will do. But, in actual practice, the physicist in the lab typically
calls upon both perspectives to understand the electro-optic behavior of a solid.
Our approach here is to present this amalgam of photon and field language, as
typically heard in the physics community, in as useful a way as possible.

In Chapter 12, we began a discussion on the time dependence of dielectric
response in a domain of typical E&M waves. The magnetic response and its cor-
relative, permeability, weren’t explored since it is clear that in “normal materials”
the influence of the B field on observable optics is usually small compared with
the electric field. So, we usually do think of material optics as Optics = Dielectric
Response to an E&M wave.1 And this really is too bad; such simplifications often
obscure the more elegant physics. For example, metamaterials that combine com-
ponents of negative permittivity and negative permeability often yield a negative
indexed material (bending light backward from Snell’s law) [1]. Optics today is
a dynamic and evolving field due to the demonstrations of such materials sys-
tems – materials that no one thought should exist!

In a solid-state physics text though, our focus is different. If optics is how a
material changes a light wave, then optical interactions (to our mind) must be
how the light wave modifies a material. Our goal is to explore the behaviors of
a solid’s electrons and ions when exposed to an optical field (a photon). And
what we failed to examine previously is the interplay between the E&M field and
a material’s polarization in the context of many-body physics and correlation.2
Optical-field-mediating correlated behaviors include polaritons, giant oscillator
strength phenomena, plasmonics, and more. So, if we want to know why structures
from azo-linkages to carbon nanotubes couple strongly to the optical field, then
we must know something of this type of correlation. You can think of Chapters
12 and 13 to be related in a way analogous to Chapters 8 and 10; there we began
with single particle states to describe the current in a conductor and ended up
with highly correlated behaviors that we called quasiparticles.

Unfortunately, the universe3 places limits on space-time. So, the reader must
already be familiar with electromagnetism4 to get the most from this presen-
tation. This means a familiarity with Maxwell’s equations and their solutions,
reflection, refraction, Snell’s law, Beer’s law, etc. A good intermediate undergrad-
uate course will do nothing too taxing. But we will state as fact some results from
classical electromagnetic theory (Figure 13.1).

We can expect that the strongest coupling between materials and E&M waves
will occur at the concordance between natural resonances of the material at
the microscopic level and the frequencies of the E&M wave. But what are those
resonances, and to what part of the materials system are they attributable?
Plasma oscillations? Elastic oscillations? Other? What collectively couples to the
time-dependent fields E(r,t) and B(r,t), and how strongly?

1 We are leaving out magneto-optic phenomena like the Kerr rotation. But for simple a lens, prism,
mirror, you can see what we mean.
2 Here we mean quantum correlation or the propensity for forming quasiparticles.
3 By “universe” here, we mean “publisher.”
4 Here we make reference to the intermediate level course usually taken by US college juniors.
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Figure 13.1 Near-field image of three
silver nanoparticles (∼10 nm in
diameter each). Source: Courtesy
Nanotech Center WFU.

13.1 Maxwell and the Solid (Review)

Briefly recall that Maxwell’s equations lead to the basic solution in vacuum of
a traveling E&M wave. This traveling electromagnetic wave (light/radiation/
photon) is a delicate and self-perpetuating dance between the electric field and
the magnetic field. The wavelike solution exists in materials through which the
wave transverses as well. But the waves in a vacuum and waves in a solid are
subtly different.

13.1.1 In a Vacuum

As a reminder, Maxwell’s four first-order differential equations – (∇× E/B =),
(∇⋅ E/B =) – are usually combined into two second-order differential equations
to show that the connections between E and B lead to a traveling wave solution:

∇2E = 𝜇0𝜀0
𝜕

2E
𝜕t2 , ∇

2B = 𝜇0𝜀0
𝜕

2B
𝜕t2 (13.1)

There are many wave solutions for these equations. The exact solution for a
specific problem is uniquely determined by the boundary conditions that might
be applied. We can state general solutions by suggesting that any waveform that
could be a solution to these equations would be subject to Fourier’s theorem.
This means it can be expanded in terms of a set of basis functions that adequately
covers the space of interest. In Cartesian coordinates this usually means choosing
sines and cosines:

B0 =
k
𝜔

E0 =
1
c

E0 (13.2)

Shown in Figure 13.2 are the so-called plane wave solutions. The fact that we
have identified c with 1/(𝜇0𝜀0)1/2 indicates that this wave moves in a vacuum. The
terms in the second-order wave equation also indicate that there are no sources
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Magnetic field

Plane-polarized electromagnetic wave

Wavelength λ

Direction of travel for the wave

Written as:

E(z,t) = Eo sin(kz-ωt) x
or more conveniently as:
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~ ~

Figure 13.2 A plane polarized E&M wave in vacuo. The tilde over the E in the exponential
expression indicates that the amplitudes are complex written this way. This wave is moving in
+z and polarized along x. The magnetic field that goes along with it is in phase, perpendicular
to E, with k pointing along z and B along y, and a magnitude.

of charge or current in the system. This is a freely propagating plane wave. Curi-
ously, given time, this simple self-sustaining structure can make its way across
the universe!

13.1.2 In a Material

∇ × H⃗ − 1
c
𝜕D⃗
𝜕t

= 4𝜋
c

j⃗

∇ × E⃗ + 1
c
𝜕B⃗
𝜕t

= 0

∇ • D⃗ = 0

∇•B⃗ = 0

D⃗ = 𝜖E⃗

B⃗ = 𝜇H⃗

j⃗ = 𝜎E⃗

In a material, Maxwell’s equations change. This is due to polarization and mag-
netization effects. In simplest terms 𝜇0𝜀0 becomes 𝜇𝜀, and there can be bound
charge and current distributions as well. The four expressions of Maxwell are
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shown at the lower left. Here we have taken the case where there are no free
charges anywhere.

Notice that we have switched to the use of cgs units. Thus, unlike the equations
in Chapter 12, we have the additional prefactors 1/c and 4π/c. This really adds
nothing to the physics, but it does make the units look a little nicer at the end.
Also, many of the references we cite do it this way, so we are trying to make it a
little easier to follow along in them.There are constitutive equations that go with
Maxwell’s equations in materials. These contain assumptions about the relation
of P to E and D. This is the specific information that we saw in Chapter 12. Obvi-
ously here, these constitutive equations are stating that we are considering linear
dielectrics:

∇2E⃗ = 𝜖𝜇

c2
𝜕

2E⃗
𝜕t2 +

4𝜋𝜎𝜇
c2

𝜕E⃗
𝜕t

∇2H⃗ = 𝜖𝜇

c2
𝜕

2H⃗
𝜕t2 + 4𝜋𝜎𝜇

c2
𝜕H⃗
𝜕t
.

The equations are then combined as before to yield the second-order wave
equations shown. 𝜎 is the conductivity of the medium, and a new linear term
appears in the equations. For an insulator or undoped semiconductor at low tem-
peratures, 𝜎 = 0, and these expressions describe the propagation of the E&M
wave within the medium where the velocity is different from that of c shown in
Figure 13.3. Metals, however, have an uncountably large number of freely mov-
ing electrons. This yields a large 𝜎. The linear term in the equation then gives
a real exponential decay, and propagation is damped out rather quickly as in
Figure 13.3. Semiconductors are seemingly between metals and insulators. They
have itinerate carriers and polarization.

Finally, there are exceptional situations where dimension, length scale, and
topology also defines response (a materials plus object-level response). If a
metal nanoparticle is so small that not many electrons are available for response,
the field inside may no longer be zero! A nonconnected assembly of these
nanoparticles might then have a finite dielectric response unlike most metals.
Carbon nanotubes have extraordinarily long carrier phase coherence. Thus,
their antenna properties (or oscillator strengths) are exceeding large. This makes
them better antennae than one would expect from classical electromagnetism,
by orders of magnitude. Such examples challenge our classical notions.

13.1.3 A General Solution in the Solid

Propagating solutions to Maxwell’s equations are usually broken down into
those for dielectrics, those for metals, those for semiconductors, and the special
cases like nanoscale objects, random scattering media, phase coherent arrays,
and metamaterials (you get the idea). Shown in Figure 13.3 are the solution cases
for dielectrics and metals as a reminder.
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Figure 13.3 Solutions to Maxwell’s wave equation for dielectrics and materials with free electrons. In the absence of free electrons, the propagating field
couples to polarization within the solid, whereas when free electrons are present, coupling between those electrons and the field is possible. The later leads to
a damping of the field within the solid in a characteristic distance known as the skin depth, 𝛿.
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Figure 13.4 The classical picture of light/condensed matter interactions. (Top) The boundary
conditions applied to the sine wave solutions of Maxwell’s equation. (Bottom left) The velocity
and the electric field strength for the reflected (R), incident (I), and transmitted (T) wave.
(Bottom right) The frequency is constant set by the source, while the wavelength and
wavenumber changes because the velocity is changing in the material.

In using these solutions, boundary conditions are applied, wherein the spatial
polarization of the incoming electromagnetic wave, with respect to the surface
normal, is the important factor. Shown in Figure 13.4 is the familiar geometri-
cal construct for applying such boundary conditions at a dielectric surface. The
problem is reduced to solving for components of the electric/magnetic field that
lie in the plane of the surface and components that lie perpendicular. The stan-
dard notation to refer to the parallel (||) and perpendicular (⟂) components of
the E and B fields is shown. We have not shown the reflected wave in Figure 13.4.
But, of course, reflected and transmitted waves will add vectorially to give the
incoming wave a sort of conservation principle. With this construction and geo-
metrical arrangement, it is possible to derive a whole range of optical phenomena
from reflection to Snell. This is done in many E&M textbooks such as Griffiths
and is what is usually referred to as geometrical optics [2]. Such a simple approach
is quite useful, but in reality the response of a material to the translating fields of a
photon is far more nuanced and interesting than this. There is much, much more
to the interaction between photons and materials than simple geometrical effects.

13.1.3.1 A Fun Notational Fact
When talking about spectroscopy, scientists will often refer to “p- and s-polarized
light.” This refers to the relative orientation of the E-field polarization with
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respect to the surface normal and the incoming ray (the plane of incidence).
p-Polarized light is understood to have the electric field vector pointing parallel
to the plane of incidence on a surface (p for parallel), and s-polarized light has
the electric field vector perpendicular to this plane of incidence (s for senkrecht,
the German word for perpendicular).

13.2 Polarization Coupling: Polaritons

Let’s begin to expand our view by examining how the photon field couples to
polarization within the solid. By couples here, we mean that the local fields will
add vectorially to yield some new dynamics of the system, and we are supposing
that spatially modulated and distributed dipole fields in materials will provide
an opportunity for this. In gross terms, the velocity of an E&M wave in a solid
changes to v = (𝜀𝜇)−1/2; the frequency remains fixed, with 𝜆 and k changing to
compensate. This change in 𝜀0 to 𝜀 is a dielectric response (a polarization) to the
optical field locally. But for systems where correlation is possible, things are not
so simple.

13.2.1 Phonons with Electrical Polarization

Clearly (Chapter 12), there are many different ways in which atomic-scale charge
separation can yield local electric fields (let’s call them polarization fields). Natu-
rally, this depends on the kind of atoms and their order and bonding within the
solid. But, in a crystal, everything is bonded somehow to every other thing, and it
is easy to imagine that atomic displacement will have significant impact on local
polarization. This, in turn, has implications for the collective vibrational modes
of a system.

How might that be? Consider the case of a two-atom basis one-dimensional
lattice like the one in Figure 13.6. In Chapter 5 we identified this system’s specific
modes of vibration, analyzed the atom’s relative motion to each other, and plot-
ted the dispersion curves as shown in Figure 13.6 (lower left). But what if such
a system had a natural dipole moment built in? Let’s suppose an ionic bonding
between the masses. So M1 and M2 are opposite ions with an electrostatic inter-
action in a kind of 1D rock salt. In this case the treatment of Chapter 5 is a little
less accurate. There are now long-range forces that interact between distant sites,
and our nearest-neighbor assumption is inaccurate. We mentioned this problem
in ionic lattice sums previously.

The unique long-range interactions introduced in this geometry will lead to
anharmonicity in the oscillations. But, we might, quite fairly, imagine that we
should still expect a near-usual set of acoustic and optical mode branches in
the dispersion characteristics. And there is more. Recall that we have longitudi-
nal and transverse wave polarizations (spatial) for the branches. In our previous
approximations, we treated these as degenerate. So, for example, the single optical
longitudinal (OL) and the two optical transverse (OT) waves had the same 𝜔 and
k for each energy in the dispersion relation. However, in the optical branch, the
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Figure 13.5 A transverse, optical phonon mode with positive and negative ions that make up
two sublattices. In the optical phonon band, these move out of phase. Electrical polarization
follows this motion, and p is now a function of position and time along the line of ions. The
middle graph shows this polarization wave as it corresponds to the phonon wave above it.
When this object is coupled or resonant with a photon in the space, the objects can move
together supporting each other in their motion. The joint object’s motion is described by
dispersion curves just as we did in the case of electrons and phonons before.

atomic motion is such that the two ions (M1 and M2) move in antiphase with
each other – an out-of-phase vibration of the sublattices. An example of this
out-of-phase motion for a transverse wave is shown in Figure 13.5 (top). As a
consequence, we note that the local polarization associated with atomic length
scales (py) flips back and forth, forming a transverse wave of its own as seen in
Figure 13.5 (middle). Thus, we can anticipate important consequences for the net
polarization of the lattice, P, and the dielectric properties of the system. But it
should be readily apparent that if the phonon wave were longitudinal, the polar-
ization (p) wave formed would point along the direction of the strand since that
is the direction of the atomic motion and thus the charge separation. And, since
dipole–dipole interaction energies depend on the orientation of the interacting
dipoles, it is further clear that the interaction energy of the dipoles in the trans-
verse wave must be different from the interaction energy of the dipoles in the
longitudinal wave. This lifts the degeneracy in the optical branch quite clearly.
Indeed, the characteristic frequencies might now be labeled 𝜔L and 𝜔T, and they
have quite different values for a given energy or k. Note that the effect itself is not
very large and affects the self-energy of both longitudinal and transverse modes
without any other applied fields around.
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Since the optical phonon modes generally involve antiphase motion of the
atomic sublattices, positive and negative ions in our example, the wave in p
isn’t surprising. It is simply one of the resonant conditions (normal modes) of
the lattice, and notice the wavelength of p need not be the same as that of the
phonon carrying it. Moreover, one might expect such systems of polarization
waves to interact throughout such solids, forming resonances and quasiparticles.
But all of this would happen without the presence of external fields and energies
that depend on the specific system of interest.

13.2.2 Phonons Meet Photons

Now that we have introduced the idea of an electrically polarized phonon, let’s
examine how such an object might interact with an electromagnetic wave. So, in
other words, we want a true optical interaction for such a solid. Of course, we
really don’t much care how the electrical polarization of the phonon takes place:
if the electromagnetic wave induces it or if it is rock salt and is already present. We
are mainly interested in how an electromagnetic wave (a photon) might interact
with this phonon+ polarization wave (a quasiparticle).

We begin by first noting that an electric field vector pointing longitudinally
would only shift all the ions of one sign in one direction not forming a wave.
So, it would appear that transverse electromagnetic waves couple (add) with OT
phonon modes. In fact, longitudinal E&M waves do not couple with OT or LO
phonons, and transverse E&M waves do not couple with LO phonons.

Secondly, true coupling interactions imply that there exists some sort of reso-
nance between the photon and the phonon, i.e. a shared frequency or resonant
frequency. As in Figure 13.5 (in the lower two graphs), the dashed lines are the
dispersion of the light or photon, and these intersect with the optical branch
phonons showing where a common frequency and common k might be. This per-
haps makes it a little easier to understand why the names “acoustic” and “optical”
were chosen for the branches of the phonon dispersion spectrum.

Finally, as we will show, there emerge natural conditions at which the OT
phonon+ polarization+ the transverse electromagnetic wave will wish to
propagate together. There are, however, gaps in these conditions for which
no propagation of the combined or resonant object is allowed, known as the
reststrahlen band. Further, the coupling of our two particles does not give a
dispersion curve of the photon plus a dispersion curve of an electrically polarized
phonon added together. Instead it gives a wildly different dispersion curve of a
new quasiparticle that arises from this resonance, known as a polariton. This is
actually shown in Figure 13.5 (lower right), but we return to it in more detail
below.

Notice we have omitted the longitudinal modes. This is because photons do
not couple with them, so they are not a part of our optical interactions study.
But these modes together with any electrical polarization they may carry with
them can be excited by or interact with itinerate charge injected into the solid (so
∇⋅D≠ 0). The injected charge essentially “plows” its way through the lattice, cre-
ating its own polarization wave as it goes. Thus, there can be coupling between the
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itinerate charge and a polarization wave+ phonon.5 We refer to such an object
as a polaron.6

13.2.3 The Phonon–Polariton

Here, we make a little bit of clarification. What is being described is not necessar-
ily the stimulation of a polarization wave by a photon (view from causality), but
rather a resonance between a photon and a transverse phonon polarization wave
irrespective of the initial states. The composite beast, or resonance, is known more
formally as a phonon polariton, and it should be seen as a quantum superposition
of the photon and the polar phonon.7 Notice that unlike some presentations, we
use the phrase phonon polariton because there are different kinds of polaritons,
and we wish to distinguish between them.

Now we have a very simple picture of the phonon polariton above [3]. It consists
of a transverse electromagnetic wave and a phonon on a lattice that can support
an electrical polarization (dipoles) at the unit cell scale. To understand the nature
of coupling between the two as well as the dispersion characteristics of the cou-
pled (or resonant) state, we need to write down a mechanical expression that
correlates the undulation of the field with the motion of the ions. So we start
with Newton’s law for the ions of the rock salt chain (at general position r) and
include a sine wave electric field for the photon as a driving force (Eq. (13.3)). In
this approach, the electric field of the photon is the only local electric field being
considered. We ignore the relatively smaller contribution made by the polarized
lattice locally (the little dipoles between every two sites). Of course if we wanted
a more complete treatment, this would have to be included. But it isn’t needed to
get to the basic physics.

Beginning here:

mr̈ = −𝜅r + eE = −m𝜔2r (13.3)

E = E0e−i𝜔t (the optical field) (13.4)

We note that the fields associated with the motion of Eq. (13.3) must satisfy
Maxwell:

∇ ×H = 1
c

Ḋ = 1
c
(Ė + 4πṖ) = − i𝜔

c
(E + 4πP) (13.5)

∇ × E = −1
c

Ḣ = − i𝜔
c

H (13.6)

P = N ′er + n𝛼E (13.7)

5 Notice here that we are being careful to refer to phonon + polarization wave since the
polarization wave is superimposed on the phonon with wavelengths related to that of the phonon.
They are not separate things.
6 With careful reflection one can see a certain analogy in this “polaron” and in the polymer version
we introduced a few chapters ago.
7 We have to be a little careful with language here. A polarized phonon can be one of the
polarizations of the phonons motion (transverse vs. longitudinal), or it can be a phonon with a
polarization wave. Let’s call the second a polar phonon for now.
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N ′ = number of phonon modes
n = electron concentration
𝛼 = polarizability (13.8)

Expressing in Cartesian coordinates with the wave moving along z and E point-
ing in x, we know we will have plane wave solutions “inside” this 1D solid (bring-
ing the K⋅r out of E0 above as Kz), but we don’t know the fields:

Ex = E0
xe−i(𝜔t−Kz)

Hy = H0
y e−i(𝜔t−Kz)

Px = P0
xe−i(𝜔t−Kz)

rx = r0
xe−i(𝜔t−Kz) (13.9)

To get to the fields (or rather the restrictions on 𝜔(K ) that makes them consis-
tent with each other, we substitute these proposed solutions into Maxwell, and
we get four equations with four unknowns to solve for

iKHy −
i𝜔
c

Ex −
4πi𝜔

c
Px = 0

−iKEx +
i𝜔
c

Hy = 0

−𝜔2rx +
𝜅

m
rx −

e
m

Ex = 0

Px − N ′erx − n𝛼Ex = 0 (13.10)

This leaves the determinate
||||||||

𝜔∕c −K
K −𝜔∕c

4π𝜔∕c 0
0 0

e∕m 0
−n𝛼 0

0 𝜔
2 − 𝜅∕m

1 −N ′e

||||||||

= 0 (13.11)

which yields a characteristic equation whose roots are the conditions for which
the fields will be consistent:

𝜔
4[1 + 4πn𝛼] − 𝜔2

[
c2K2 + 𝜅

m
+ 4πN ′e2

m
+ 4πn𝛼𝜅

m

]
+ K2c2

𝜅

m
= 0 (13.12)

This is the dispersion relation, 𝜔(K ), or alternatively 𝜀(𝜔) once it is simplified.
To simplify and examine limits, we define

𝜔
2
T ≡

𝜅

m
(13.13)

And for 𝜔≫𝜔T,

P∞ = n𝛼E
𝜀∞ = 1 + 4πP∞∕E
𝜀∞ = 1 + 4πn𝛼 (13.14)

whereas for 𝜔≪𝜔T, 𝜀→ 𝜀0. And for 𝜔 = 0,

r = eE∕𝜅 (13.15)
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So,

P0 =
[

N ′e2

𝜅

+ n𝛼
]

E

𝜀0 = 1 + 4π
[

N ′e2

𝜅

+ n𝛼
]

𝜀(𝜔) = 1 + 4π
[

N ′e2

𝜅 −m𝜔2 + n𝛼
]

(13.16)

So we get for our determinant of the matrix

𝜔
4
𝜀∞ − 𝜔2[c2K2 + 𝜔2

T𝜀0] + 𝜔2
Tc2K2 = 0 (13.17)

which has two solutions:

𝜔
2 = 1

2𝜀∞
(𝜔2

T𝜀0 + c2K2) ±

(
1

4𝜀2
∞
(𝜔2

T𝜀0 + c2K2)2 −
𝜔

2
TK2c2

𝜀∞

)1∕2

(13.18)

There is an important characteristic that stands out right away: there are two
(OT) solutions for 𝜔 for every value of k (we just said that)! One set of values
forms the upper polariton band (UPB), and the other a lower polariton band
(LPB). So, for a given K there are two possible states – one of high energy and
one relatively lower – but both of which represent a transverse polariton. Picto-
rially, one might think of this situation in terms of the relative phase relationships
between the superimposed wavefunctions of the interacting entities. Graphically
the dispersion looks like Figure 13.6.

Notice that for small wave vectors the positive solution of the above equation
is

𝜔
2 = 1

𝜀∞
(𝜔2

T𝜀0 + c2K2) (13.19)
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Figure 13.6 The coupled excitation of the optical transverse phonon to the electromagnetic
radiation is what is referred to as a phonon polariton. Above is the transition of the dispersion
curve from the phonons of the 1D ionic crystal to this phonon polariton where the
photon–phonon has become resonant. It shows a splitting of the optical phonon modes and a
band of energies where phonon polaritons cannot propagate but are rather absorbed. The LO
phonon mode is also shown with the upper polariton branch. Notice that the diagram right is
the section of the left diagram highlighted in the box along the 𝜔-axis.



538 13 Optical Interactions

𝜔
2
L ≡

𝜔
2
T𝜀0

𝜀∞
(13.20)

𝜔T/L = cK/
√
𝜀0/∞ are shown as a straight thin dashed lines on the graph in

Figure 13.6, and in the long wavelength limit, the dispersion curve’s upper and
lower branches can be seen to approach these values. Notice that the lower
branch of the polariton curve is pinned below the 𝜔T – cK/

√
𝜀0 axis lines and

the upper branch is pinned above the 𝜔L – cK/
√
𝜀∞. This gives us some insight

into how we might physically picture the evolution of the states as a function
of 𝜔: the two lines define the assignment of “phonon-like” and “photon-like”
behaviors. Clearly when the “resonance object” is approaching the 𝜔T/𝜔L line
asymptotically, it has a dispersion like an uncoupled phonon. If it approaches
the photon curves, then it is acting more like a photon.

The 𝜔L value shown on Figure 13.5 at the intercept of the upper branch is
defined by the zero of 𝜀(𝜔). As 𝜀(𝜔) goes negative there is no propagation because
K becomes imaginary for a real𝜔. This situation occurs through the gap between
𝜔OT and 𝜔LO. Thus, this region gives strong absorption because the exponent in
the wave solution becomes real. Curiously, 𝜔LO is also the frequency of the LO
phonon modes of the lattice, so it has two meanings (see Exploring Conceptssec-
tion). Eq. (13.19) is actually known as the Lyddane–Sachs–Teller equation, and it
was originally derived for a two-atom basis on a cubic lattice. Notice that as 𝜔T
goes to 0 (soft phonon modes), 𝜀(0) becomes infinite. This is a characteristic of
the interactions between p-waves we spoke of above, leading to ferroelectricity.

13.2.4 The Plasmon Polariton

As we have already described in Chapter 10, plasmons are the oscillations of the
electrons in a plasma. These oscillations lead to traveling waves, and they have,
each, a well-defined frequency and wave vector. Moreover, the plasmon plasma
wave is a longitudinal wave. Thus the displacement of the electrons (relative to
the positive ionic background) is parallel to the direction of propagation of the
wave. This means that the transverse fields of the photon do not couple with the
plasmon in any obvious way.

When we consider the electron sea moving relative to the ionic background in
a density wave, it seems obvious that there will be alternating positions of rela-
tive positive and negative charges along the wave spatially. Therefore, we expect
that the plasmon would have a local dipole moment as part of its excitation in
a way analogous to that of the ionic phonon. So, we ask, “are there some set of
conditions that would allow for a photon to couple to this excitation forming a
polariton?” We have already suggested that the answer is “no” for most normal
circumstances, but we all know that nature will frequently find a way around our
objections.

To see nature’s answer, we note that plasmons themselves are found in a vari-
ety of different configurations, both 2D (nanoplatelets) and 3D. Figure 13.7 gives
a diagram of some of these. The dispersion characteristics of the plasma wave
are quite different in each case, but it is the localization and restriction of elec-
tron flow across the object or within the material that provides the opportunity
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Figure 13.7 Models of the bulk plasmon, the surface plasmon, and the localized surface
plasmon on a nanoparticle. On the right is given the results of applying Maxwell’s equations to
the Drude model for 𝜀 and the frequency range of each type of plasmon. These are, for
example, the eigenfrequencies that the plasmonic system can take on in the case of surface
plasmons: 0<𝜔<𝜔p/
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for coupling this wave with light (the formation of the polariton). To be more
specific:

1. Plasmons localized to the interface between two materials (surface plasmons)
can form the surface plasmon polariton (SPP). This is because a photon can
be incident on the interface at an angle. A p-polarized photon (polarized in
the plane of incidence) can be decomposed into two components: one per-
pendicular to the interface and the other parallel to the interface. The parallel
component can excite a surface plasmon because this component now forms a
longitudinal wave. The photon and surface plasmonic state (sometimes called
the “surface plasmon resonance” (SPR)) must have the same frequency and
wave vector. So, the component of the E&M wave vector parallel to the inter-
face has to be equal to that of the SPR. To observe an SPP experimentally, the
absorption of an incident E&M wave (of constant frequency) is measured as
a function of the angle of incidence on the interface. By changing the angle of
incidence, the component of the photon wave vector parallel to the interface is
“dialed in.” The presence of a peak in the absorption vs. angle curve will indi-
cate the excitation of an SPP. By varying the incident photon frequency and
determining the angle of incidence at which the SPP is observed (and hence
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the wave vector of the SPP), the entire dispersion curve of the SPP can be
mapped.

2. Plasmons with some sort of bulk confinement such as found in a metamaterial
(or a material with hyperbolic bands) can form bulk-like plasmon polaritons.
But there must be edges to current flow in one way or another. Here, we do not
mean a collection of internal SPPs. Instead the coupling of photon–plasmon
states in electron-confined spaces allows for unique self-interactions and gives
rise to an entirely new part of the dispersion curve for plasmon polaritons.
Such polaritons are far less common but are quite important for understand-
ing losses in metalenses and some types of meta-antennae. Moreover, they also
provide a route to the transport of photons through a metallic-like system as
a polariton.

There are similarities between the concepts of the plasmon polariton and the
phonon polariton. In Chapter 10 the dielectric response of the Drude metal was
expressed with 𝜔p = plasma frequency and 𝛾 = system damping:

𝜀m = 1 −
𝜔

2
p

𝜔2 ; 𝜔p =

√
ne2

𝜀0m
(13.21)

This is the simplest description of the plasma oscillation. It is shown schemat-
ically in Figure 13.7 and graphically in Figure 13.8.

Using the dielectric expression above, we return to Maxwell and solve for the
equations of the dispersion curve. Of course, if we follow the steps of the phonon
polariton dispersion exactly, then we would be deriving a bulk-like plasmon
polariton and a bulk-like 𝜀(𝜔) where we have not yet given any boundary
conditions (Figure 13.9):

𝜔
2 = 𝜔2

p + c2k2 (13.22)

But this dispersion implies that the bulk plasmon polariton frequency is always
greater than the plasma frequency 𝜔p. This means that no transverse electro-
magnetic wave with a frequency smaller than 𝜔p can be transported through the
material.

So we have a dispersion curve of a bulk plasmon polariton, where such objects
are allowed to exist. Next, we have the plasmon polariton associated with surface
waves. The picture one should have is as in Figure 13.10.

0ε

ω

ωP

Figure 13.8 An approximation to the
dielectric function of the electron gas.
Notice that the function goes negative
for frequencies below 𝜔p.
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Figure 13.9 The bulk dispersion curve derived
from applying Maxwell (not shown). The dispersion
equation for the bulk properties of the bulk
plasmon polariton is in Eq. (13.22).
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Figure 13.10 The surface plasmon polariton is a coupling between the photon and the
surface plasmon at the interface between a metal and a dielectric. However, the electric field
does not extend far beyond this interface.

In the dispersion relations for a wave in the geometry of Figure 13.10 configu-
ration, we apply ∇×H = 𝜀c−1

𝜕E/𝜕t assuming a wavelike solution for the fields.
Keeping in mind that the k’s and the 𝜀’s are different on different sides of the inter-
face, we then have to use boundary matching for E and H components. This gives
us the following components:

Ey = Hx = Hz = 0 (13.23)
Hd = (0,Hyd, 0)ei(kxdx+kzdz−𝜔t)

Ed = (Exd, 0,Ezd)ei(kxdx+kzdz−𝜔t)

Hm = (0,Hym, 0)ei(kxmx+kzmz−𝜔t)

Hm = (Exm, 0,Ezm)ei(kxmx+kzmz−𝜔t) (13.24)

as we go from metal to dielectric. And our boundary conditions at z = 0 are

𝜀mEzm = 𝜀dEzd (13.25)

Exm = Exd (13.26)

Hym = Hyd (13.27)
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which yield

kxm = kxd (13.28)

so

kzmHym = −𝜀m
𝜔

c
Exm (13.29)

kzdHyd = 𝜀d
𝜔

c
Exd (13.30)

kxmHym = −𝜀m
𝜔

c
Ezm (13.31)

kxdHyd = −𝜀d
𝜔

c
Ezd (13.32)

From these we get
kzmHym

kzdHyd
= −

𝜀mExm

𝜀dExd
(13.33)

kzm

kzd
= −

𝜀m

𝜀d
(13.34)

kzd

𝜀d
+

kzm

𝜀m
= 0 (13.35)

and

k2
x =

(
𝜔

c

)2 𝜀m𝜀d

𝜀m + 𝜀d
(13.36)

k2
zd =

(
𝜔

c

)2 𝜀
2
d

𝜀m + 𝜀d
(13.37)

k2
zm =

(
𝜔

c

)2 𝜀
2
m

𝜀m + 𝜀d
(13.38)

where the kx is real and the kz’s are imaginary. Thus the dispersion curve looks
like the one in Figure 13.11.

However, we note that propagation is going to be along the interface. And the
more astute student who is adept at E&M will notice that this doesn’t look so
different from other waveguide problems. However, there are a few things that
should be recognized:

1. Only radiative surface plasmons are coupled with propagating E&M waves.
Non-radiative surface plasmons do not couple with propagating E&M waves.

2. Perfectly flat surfaces allow only SPPs that are always non-radiative! Thus,
rough surfaces will be needed to see emission from plasmon polaritons.

3. In contrast to conventional waveguides, the electric field on either side of the
interface is evanescent.

It has probably become clear that we could make a far more general statement
about polaritons. The polariton can be generally defined as the mixing (in the
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Figure 13.11 The dispersion curve of plasmon polaritons. Notice that the 𝜔p is the volume or
bulk plasmon frequency. The 𝜔SP is the collective nonpropagating surface oscillations.

sense of a quantum superposition of states) of a photon with any excitation of the
solid that has a polar component. We have seen examples in phonon polaritons
(for ionic crystals) and plasmon polaritons, but there are many others. We will
examine one final example of this: exciton polaritons. First, however, we need to
introduce some new ideas.

13.3 Optical Transitions, Excitons, and Exciton
Polaritons

Things can get complicated when direct transitions between electronic states
are allowed: bandgap absorption of a photon. It is even worse when optically
active defects (defects that absorb a photon and release a charge into a band)
are involved. But this is exactly what happens in semiconductors and small
bandgap insulators. In fact, the absorption and emission of light from solids
is an entire field of technology today. So, we need a few good models to help
guide us.

13.3.1 Transitions

Recalling from our previous discussions on semiconductor band structure, we
discussed transitions between bands. The electron absorbs a photon or some
thermal energy and is promoted from a lower band into a higher energy state
(presumably another band unless there are defect states around). Shown in
Figure 13.12 are two versions of the process that we are discussing: the direct
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Figure 13.12 Absorption processes and their
de-excitation emission processes are simply
transitions between electronic states in the solid.
Shown here is a schematic representation of
absorption, in one case a direct excitation from
valence band maximum to conduction band
minimum. The difference in energies (Eg = Ec − Ev)
is frequently referred to as the optical bandgap.
However, the process shown in the lower
schematic is a little more complicated. Here
conduction and valence band minima and maxima
do not align. So, either a direct transition might
take place if the incoming photon has enough
energy, in which case a phonon is generated and
the electron is thermalized to the bottom of the
conduction band, or a transition between energy
minima might take place if momenta can be
balanced with an existing phonon in the system.
So, for the indirect transition the semiconductor
can absorb or emit a phonon.

and indirect bandgap transitions. You may also recall that these two different
processes are the result of momentum conservation in the electronic transition
and that the direct one leads to luminescence while the other indirect transition
typically does not:

ℏ𝜔 = Ef − Ei ± ℏ𝜔q (13.39)

where the f and i subscripts are for final and initial states. Either way, the proba-
bility for this process is different from that of the direct process. Thus, the absorp-
tion coefficient in the two cases will be different, as will the photon emission
(de-excitation or recombination) characteristics.

Notice that an electron and hole are produced by such transitions, but they may
have very different effective masses. The energy difference between the valence
band maximum and conduction band minimum is called the energy gap Eg for
both cases, but the top is a direct gap and the bottom an indirect gap.

Of course, we are all now familiar with Beers law: I ∼ I0e−𝛼z. This is a simple rule
in which the physics “model making” is locked up in 𝛼, the absorption coefficient.
Seen schematically in Figure 13.13, 𝛼 can help us understand which processes are
dominate in photon–solid interactions.

Indeed, 𝛼 can be a bit like the 𝜀(𝜔) described above: it provides a specific
way of measuring the effects of the models we propose. Unfortunately, direct
first-principles calculations of this quantity (for most processes) can be pretty
detailed, so we tend to rely on approximations using Fermi’s golden rule from
basic quantum mechanics.
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Figure 13.13 The absorption coefficient varies with frequency of light being used, and it can
incorporate many different absorption and scattering mechanisms. Shown here is an idealized
curve of 𝛼. There is the simple scattering from defects and inclusions in the crystal, and, of
course, we have already seen how phonons can effect incoming photons. Plasmons would
also be in here if such an entity existed in the solid along with any other kind of quasiparticle.
However at the bandgap energy, electronic transitions between bands begin to dominate.

Free Carrier Absorption

Direct Interband Transition

Indirect Interband Transition

absorption of an excited state carrier into another excited state

absorption of valence band electron into conduction band excited state

phonon or other quasiparticle assisted absorption processes

Semiconductor

The many faces of α. 

Allowed transitions

Forbidden transitions

General Coeff.

Metal at low frequency

αabs(ω) ~ ω–2

αabs(ω) ~

αabs(ω) ~

αabs(ω) ~ (ћω – Eg ± ћωq)2

αabs(ω) ~ ω
1
2

1
2(ћω–Eg)

ћω
3
2(ћω–Eg)

ћω

The 𝛼 dependence on 𝜔 for different processes, as the result of a basic transi-
tion rate analysis, is listed above. Full derivations of these results can be found in
a number of texts devoted to optical properties of solids [4]. There are, however,
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two things of note that should be emphasized. The first is that reflection and
transmission spectroscopy does obviously provide a powerful tool in identifying
dominant interaction mechanisms for materials. The second point is that these
results are worked out for bulk, 3D, infinite crystals. They change drastically when
considering systems of finite size in 1D or 2D!

13.3.2 Carbon Nanotubes: An Example

This last point is of particular interest to this text. The absorption character-
istics as measured in the absorption coefficient can be strongly influenced by
the dimensionality of the materials under consideration. Nowhere is this better
demonstrated than with carbon nanotubes.

We note first that absorption in a thin film of aligned carbon nanotubes is
strongly polarization dependent. When the electric field of the incoming photon
is aligned with the axis of the nanotube, absorption is quite strong, whereas when
the electric field is aligned perpendicular to the nanotube axis, the absorption is
considerably weaker. Thus, they act like a polarization film, and an absorption
matrix must be calculated to account for this orientational dependence. As we
already know carbon nanotubes can be metallic or semiconducting depending on
diameter and chirality, so for the metallic nanotubes, this makes absolute sense
in terms of a simple Drude model. In terms of the semiconducting variety, it is a
little harder to understand but becomes more apparent when we think in terms
of the available k-states into which an electron may be promoted.

We may then ask, “in the case of optimal polarization for absorption, do car-
bon nanotubes behave as we might expect carbon, or any other semiconductor or
metal, to behave in terms of 𝛼?” Again, the answer is not quite. A detailed calcu-
lation and analysis of the absorption coefficients of whole families of nanotubes
has been performed by Malić et al. [5]. This study found that the absorption coef-
ficient for an arbitrary zigzag tube goes as 𝜔−2 across the frequency spectrum
even though such tubes do have a finite bandgap. This looks more like free car-
rier absorption in 3D systems. However the study underestimates the strength
of the absorption (when compared to experiment). This could be contributed to
the extremely large dephasing length in nanotubes that allow them to behave as
antennae generally. In such systems, the whole object contributes to the oscillator
strength of the transition [6].

13.3.3 Color Centers and Dopants

Besides direct and indirect band transitions, another important mechanism
to consider in absorption and recombination phenomena is that of defect and
dopant atoms in the lattice. We have previously discussed defect states and
dopant states. They lead to states within the bandgap of semiconductors and
insulators. But now we must consider the potential of such states to be optically
active. Recall that the energy difference between the band edge and the gap state
is typically less than Ec −Ev. This means that sub-bandgap light can excite such
transitions and that very specific emission profiles will be associated with them.
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Figure 13.14 A negative ion vacancy yields a gap state. Relaxation around the vacancy gives a
complex potential landscape (gray) that can trap an electron in the vicinity of the vacancy. The
Earnshaw theorem says this electrostatic trap cannot be stable. So there is a finite lifetime.

In ionic crystals (i.e. alkali halides), electrons can be trapped at negative ion
vacancies that have an effective positive charge. We can think of this in terms of
Figure 13.14, a simple model of electronic transition from a filled defect state into
the conduction band with the local Coulomb field and Pauli exclusion8 localizing
the electron near that defect.

The electron trapped in such a localized state will typically have an s-like or
p-like wavefunction, so it is rather hydrogenic in nature. The different excited
states of this “hydrogenic atom” are linked by optical transitions. Absorption and
de-excitation due to these hydrogenic transitions will usually impart some color
to the crystal, so they are known as Farbe centers or F-centers (Farbe is the Ger-
man word for color). A variation on this theme is particularly advantageous in
many gemstones.

There is a curiosity in the transitions of F-centers. That is, there is a pronounced
shift in wavelength between the absorbed photon and the emitted photon. This is
due to the nature of the trapping potentials involved. When a photon is absorbed,
the vacancy-trapped electron is in a state that is defined by the local potential
well. This is strongly influenced by the relaxation of other ions in the location of
the defect. However when the electron is excited, the local potentials change. The
excitation process is fast. The change in the relaxation of the surrounding ions is
slow. Thus a Franck–Condon effect takes place; the transition happens, and then
the local ions respond, changing the energy of the state the electron moved to.
Thus, the difference in the absorption and emission energies is directly related
to the energy of configuration change in the lattice locally. This also means that
F-centers can be quite sensitive to temperature.

A vacancy is energetically the favored defect to occur. But there are many ways
in which this can happen and, thus, many different types of optically active defect
centers. First, defects, much like their atomic counterparts, like to cluster in the
solid. Defects typically form in such a way as to be charge neutral. So when an
ion is removed from a site and is displaced into an interstitial location of the

8 We include Pauli exclusion here to include the idea that the electron in the conduction band may
move through a Hubbard-like hopping mechanism.
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lattice, the defect and the ion remain bound electrostatically. This is referred to
as a Frenkel pair. However, when nearby vacancies, one positive (where a cation
should be) and one negative (where an anion should be), link together Coulom-
bically, this is known as a Schottky pair. Again, because of the local potential
landscape, the optical absorption and emission characteristics of such pairs can
be unique.

This clustering also gives rise to the proximal location of F-centers. For
instance, the F2-center or M-center is two neighboring anionic vacancies that
bind two electrons in a way analogous to a helium atom. An F3-center or
R-center is three such neighboring anionic vacancies binding three electrons. If
an F2-center is stripped of an electron, this appears as an ionized system: a hole
bound by two negative charges. This is referred to as a V k-center. Curiously, the
positive analogue of the F-center does not exist. That is, there isn’t such a case
where a cation vacancy traps a hole. Quite simply this is because the concept of
the hole is a many-body-derived concept. It only makes sense over several lattice
positions but not over the length scales of a single vacancy.

13.3.4 Excitons

In a simple single particle picture, absorption leads to the creation of an electron
in the conduction band with a hole left behind in the valence band. Both are free
to move in the crystal. But we note that the electron and hole are charged par-
ticles. Further, at temperatures that are low relative to the bandgap energy, any
semiconductor or insulator would have a relatively small number of free carri-
ers in the conduction band. So it wouldn’t be too surprising to suggest that the
electron and hole might lower their combined energy by binding together. The
lack of free carrier density would prevent effective screening (for kBT ≪Eg). This
means the Coulomb field could certainly produce such binding. In 1931 Yakov
Frenkel argued that the electron–hole pair created in this way would behave as
a single charge neutral entity that he called an exciton [7]. Indeed, the nanotube
absorption example that was given above is dominated by such excitons.

In general, the exciton must be considered in two different limits of the band
structure. The first is the case of very weak binding. Such binding can occur when
the conduction and valence bands are relatively flat and curved slightly differently,
yielding slightly different dispersion characteristics of the hole and electron. Such
excitons are referred to as Mott–Wannier excitons, and the electron and hole orbit
each other at large distances. Alternatively, the second case is when the electron
and hole are very tightly bound, so as to occupy practically the same lattice posi-
tion. In this case, typically, critical points exist between bands, and the dispersion
of the electron and hole is equal. This is called a Frenkel exciton.

In a quantum mechanical treatment of such bound states, the Schrödinger
equation is usually split into a hydrogenic part and a center of mass part for the
motion of the bound pair. However, just as in the case of the F-centers above, this
can be a little misleading since such a treatment relies on a single particle picture
of electronic band states when in fact we are dealing with a many-body problem
in general. Thus, as expected, there are a number of caveats in exciton behavior
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that arise. While these go a bit beyond our present discussion, effects such as
giant oscillator strength in self-trapped excitons are now widely studied [8].

13.3.5 Exciton Polaritons

One of these “unusual properties” found in excitons is their ability to interact with
a photon to form an exciton polariton. As we know, the polariton concept requires
a polar excitation in the crystal with which the photon may interact. The moving
exciton provides exactly this. Clearly the displacement of charge results in a local
dipole moment. If orbital frequencies are some multiple of the frequency of some
incident photon, then a superposition of fields can occur, yielding a polariton.
This is an exceedingly simple mechanical picture of course, but it does suggest
a dispersion curve that divides up into regions of photon-like and exciton-like
behaviors just as we saw above for plasmons and phonons.

13.4 Kramers–Kronig9

To finish our “tour” of the optical properties in solids, we should examine the
models and data above from the experimental point of view. We have already
mentioned processes such as Raman and Brillouin scatterings, and these are
really quite useful. However, a particularly simple but important tool is simply
absorption and reflection. We have written many of our models in terms of the
dielectric response, but how is the connection between absorption and reflection
made? The connection is, if fact, not so hard [9].

We begin with the relationship between E and D for some particular frequency
in a solid:

D(x, 𝜔) = 𝜀(𝜔)E(x, 𝜔) (13.40)

giving the Fourier transforms

D(x, t) = 1
√

2π ∫

∞

−∞
D(x, 𝜔)e−i𝜔td𝜔 (13.41)

D(x, 𝜔) = 1
√

2π ∫

∞

−∞
D(x, t′)ei𝜔t′dt′ (13.42)

E(x, t) = 1
√

2π ∫

∞

−∞
E(x, 𝜔)e−i𝜔tdt (13.43)

E(x, 𝜔) = 1
√

2π ∫

∞

−∞
E(x, t′)ei𝜔t′dt′ (13.44)

So

D(x, t) = 1
√

2π ∫

∞

−∞
𝜀(𝜔)E(x,𝝎)e−i𝜔td𝜔 (13.45)

9 This requires a good knowledge of complex integrals.
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D(x, t) = 1
2π ∫

∞

−∞
𝜀(𝜔)e−i𝜔td𝜔

∫

∞

−∞
E(x, t′)ei𝜔t′dt′ (13.46)

D(x, t) = 𝜀0

[
E(x, t) +

∫

∞

−∞
G(𝜏)E(x, t − 𝜏)d𝜏

]
(13.47)

where

G(𝜏) = 1
2π ∫

∞

−∞

[
𝜀(𝜔)
𝜀0

− 1
]

e−i𝜔𝜏d𝜔 = 1
2π ∫

∞

−∞
𝜒e(𝜔)e−i𝜔𝜏d𝜔 (13.48)

is called the “susceptibility kernel.”
Since

𝜀(𝜔) = 𝜀0[1 + 𝜒e(𝜔)] (13.49)

and

𝜒e =
𝜀

𝜀0
− 1 =

𝜔
2
p

𝜔
2
0 − 𝜔2 − i𝛾0𝜔

(13.50)

from our section of dielectrics, then,

G(𝜏) =
𝜔

2
p

2π ∫

∞

−∞

e−i𝜔𝜏

𝜔
2
0 − 𝜔2 − i𝛾0𝜔

d𝜔 (13.51)

This integral can be worked using contour methods. First, we find the roots of
the denominator:

𝜔1,2 =
1
2

[
−i𝛾 ±

√
−𝛾2 + 4𝜔2

0

]
(13.52)

or

𝜔1,2 = −
i𝛾
2
± 𝜔0

√

1 − 𝛾2

4𝜔2
0
= − i𝛾

2
± v0 (13.53)

where v0 ≈ 𝜔0 when𝜔0 ≫ 𝛾∕2, and these poles are in the lower half plane since
𝛾 is dissipative (negative). This then gives

G(𝜏) = (2πi)
𝜔

2
p

2π∮C

e−i𝜔𝜏

(𝜔 − 𝜔1)(𝜔 − 𝜔2)
d𝜔 (13.54)

We close the integral in the upper half plane and restrict 𝜏 < 0. This is to ensure
that the integrand goes to zero at the boundary at infinity where 𝜔 has a positive
imaginary part. Since the integral encloses no poles in the upper part, G(𝜏) < 0
vanishes. This is essentially ensuring causality.

Now closing the integral on the lower half plane, 𝜏 > 0, we get

G(𝜏) = 𝜔2
pe−

𝛾𝜏

2
sin v0

v0
Θ(𝜏) (13.55)

where Θ is the Heaviside function.
Finally we use Cauchy’s theorem again. E and G are real. So integrating by parts,

𝜀(𝜔)
𝜀0

− 1 = i G(0)
𝜔

− G′(0)
𝜔2 + · · · (13.56)
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and so we conclude

𝜀(−𝜔) = 𝜀∗(𝜔∗) (13.57)

Therefore in the upper half plane, we have

𝜀(z)
𝜀0

− 1 = 1
2πi∮C

𝜀(𝜔′)
𝜀0
− 1

𝜔′ − z
d𝜔′ (13.58)

Let

z = 𝜔 + i𝛿 (13.59)

𝛿 → 0+ (13.60)

that is, deform the contour along the real axis just below the singular point. Then
from the Plemelj relation:

1
𝜔′ − 𝜔 − i𝛿

= P
𝜔′ − 𝜔

+ iπ𝛿(𝜔′ − 𝜔) (13.61)

Thus through substitution,

𝜀(𝜔)
𝜀0

= 1 + P
iπ ∫

∞

−∞

𝜀(𝜔′)
𝜀0
− 1

𝜔′ − 𝜔
d𝜔′ (13.62)

This then leaves us with the famous Kramers–Kronig relations

Re
(
𝜀(𝜔)
𝜀0

)
= 1 + P

π ∫

∞

−∞

Im
(
𝜀(𝜔′)
𝜀0

)

𝜔′ − 𝜔
d𝜔′ (13.63a)

Im
(
𝜀(𝜔)
𝜀0

)
= −P

π ∫

∞

−∞

Re
(
𝜀(𝜔′)
𝜀0

)
− 1

𝜔′ − 𝜔
d𝜔′ (13.63b)

This tells us that if we know the whole absorptive spectrum, then we can derive
the reflective spectrum.

13.5 Summary

So, as we already know, there are many quasiparticles that occur when electrons
and holes interact or when the lattice vibrates. These are correlated many-body
effects, and they have their own dispersion characteristics and dynamics. But it
would also appear that there exist a number of equally exotic creatures that occur
when the electromagnetic field is in superposition with a solids’ electronic or
vibrational excitations. We have seen excitons and polaritons of different types.
These can be viewed as the interaction between a photon and a quasiparticle of
nonoptical origin. Alternatively they can be pictured as the superposition of a
crystal excitation and an electromagnetic wave. They arise specifically because of
the ability of the E&M field to produce propagating solutions in the solid. To be
sure, we have not exhausted all the possibilities here. But we have produced the
reasoning for the occurrence of such optical interactions generally.
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What have we left out? We have not presented the massive amount of work
that revolves around spin–orbit effects and the use of heavy ions to create optical
effects.

Exploring Concepts

1 Phonon–Polaritons: In our discussion of the frequencies of the LO phonon
modes and the dispersion characteristics of the phonon polariton in
Figure 13.6, we made the statement that the 𝜔LO has two meanings in this
context.

(a) What is meant by this statement? What are the two meanings we have
hinted at?

(b) Using the dispersion curves in Figure 13.6, show how these two meanings
or interpretations of 𝜔LO converge to each other – in other words they are
part of the say phenomenon.

2 Plasmon–Polaritons: In the development of organic photovoltaics and
organic light-emitting devices, it is well known that reflection and absorption
from the interfaces that couple the light into or out of the device is one of
the most serious sources of loss in device performance. A quick literature
search will reveal that organic light-emitting devices (OLEDs) and organic
photovoltaics (OPVs) both suffer from losses arising from SPPs. But, why
these? Why not bulk plasmons? Do a detailed study of the literature to
explain the reason that these excitations are so important. Then demonstrate
using the dispersion curves above exactly why this might impact OPVs and
OLEDs so much.

3 Polarization Current: Now that we have some models for how polarization
occurs from the last chapter, we can make some sense of what the polarization
current is physically. Recall this is defined as

Jpol = 𝜕P∕𝜕t

and as light enters a solid, such a time-varying P is established. But can the
polarization current lead to energy absorption? Why or why not? Prove your
assertion.

4 Plasma Oscillations: Have you ever noticed that physicists typically refer to
excitations in the solid-state electron gas, as plasma oscillations, not plasma
waves? Why is this?
To see why, show that the group velocity, vg = 𝜕𝜔/𝜕 (2π/𝜆), is given by

vg = c

[

1 −
(
𝜔p

𝜔

)2
]1∕2

= nc at the plasma frequency

This means the group velocity is zero (there is no propagation of energy) at
the plasma frequency. To get a nonzero group velocity, the q dependence of
the dielectric function must be taken into account.
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5 Interband Transitions: Consider a system with numerous interband transi-
tions (bound electrons). For such a system show that the conditions for plas-
mon resonance is given as

𝜀(𝜔) = [1 + δ𝜀b(𝜔)]{1 − [(𝜔∗p)2∕𝜔2 ]} = 0

where

(𝜔∗p)2 =
4πNe2

m(1 + δ𝜀b)

6 Franz–Keldysh
Consider a simple semiconducting system with bandgap Eg. Then the absorp-
tion spectrum of such a material should look like Figure EC13.1.
For direct bandgap semiconductors this is already quite clear from what we
have learned so far. But what happens when a strong electric field is placed
across the material? This question was addressed independently by W. Franz
and L.V. Keldysh in 1965. Two effects were found to occur.
The absorption coefficient below Eg is now nonzero. In fact it is given as

𝛼(ℏ𝜔) ∝ exp

(

−
4
√

2m∗
e

3|e|ℏ𝜀
(Eg − ℏ𝜔)

3
2

)

Carrier transitions

into the band

The optical band edge : hν = Eg

No transitions

Wavelength (nm)

A
b

s
o

rp
ti
o

n
 (

a
.u

.)

λb

Figure EC13.1 The typical rendition of the optical band edge. This edge corresponds with the
energy at which sufficient absorption of photons can be detected due to interband transitions.
Notice that the “edge” is never really very sharp. There are defects and other effects that allow
for “slightly sub-bandgap” light to be absorbed in quantity.
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decreasing exponentially with

(Eg − ℏ𝜔)

So the optical band edge shifts to a lower energy as the applied field in
increased. Secondly, the absorption coefficient for

ℏ𝜔 > Eg

is modulated by an oscillatory function: Franz–Keldysh oscillations. Taken
together these are known as the Franz–Keldysh effect:

(a) Using the Kramers–Kronig relations, reason that the applied field and
increasing absorption will increase the refractive index of the material
(this modulation of the optical constants by an electric field is known as
the electro-optic effect).

(b) Estimate the electric field strength it takes to redshift the absorption band
(position of the absorption band edge) of GaAs by 0.01 eV. The effective
mass in this system is 0.067me.

(c) Do a little more background reading, and give a good model for the physics
of the Franz–Keldysh effect. What is happening?

7 Magnetic Franz–Keldysh
For direct transition semiconductors, as we described in Exercise 13.6, can we
expect a magnetic analogue? The answer is yes. We know that an applied mag-
netic field flux B will result in Landau orbits. Let’s say we put the B field in the
z-direction. In the conduction band the electron energies will be quantized
as Landau levels in x–y but free in z:

En(kz) =
(

n + 1
2

) eℏB
m∗ +

ℏ
2k2

z

2m∗

Taking E = 0 as the top of the valence band, the energy levels look like

Ee
n(kz) = Eg +

(
n + 1

2

) eℏB
m∗

e
+
ℏ

2k2
z

2m∗
e

Eh
n(kz) = −

(
n + 1

2

) eℏB
m∗

h
−
ℏ

2k2
z

2m∗
h

for electrons and holes, respectively. When illuminated and an interband
transition takes place, the electron is promoted into the conduction band
leaving a hole in its place, both falling into Landau levels. The kz values in the
transition will remain unchanged since the photon carries little momentum
with it. But surprisingly the Landau level index, n, must also stay the same.
So the transition energy has to look like

ℏ𝜔 = Ee
n(kz) − Eh

n(kz) = Eg +
(

n + 1
2

) eℏB
𝜇

+
ℏ

2k2
z

2𝜇

with 𝜇 being the reduced mass. This will have an oscillatory effect on the
absorption coefficient. Specifically a high absorption coefficient is expected
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for any transition that satisfies the above equation when kz = 0. This we get a
series of peaks at the Landau energies:

ℏ𝜔 = Eg +
(

n + 1
2

) eℏB
𝜇

; n = 0, 1, 2,…

Moreover, we expect the absorption band edge to shift to higher energy by
the amount:

ℏeB∕2𝜇

(a) Using the fact that the B field classically creates circular orbits of angular
frequency eB/m shows that the transition selection rule is given asΔn= 0.

(b) Estimate the magnetic band edge shift from a 3.6 T field in GaAs (you have
to look up the hole mass).

(c) Draw the expected absorption spectrum for a 1D direct gap semiconduc-
tor, and compare this to the magneto-FK effect. Why is the magnetic sys-
tem a good model for 1D semiconductors?
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The End and the Beginning

So there you have it. What more can we say? Well quite a bit really. We have
actually left out a whole field of solid-state physics known as kinetics or the
motion of atoms and ions through the lattice acting under a variety of driving
forces. So if you wanted to know how a battery works, exaggerated grain growth,
or dislocation pinning, this book won’t tell you. You need to look for a text on
kinetics. There is also the field of fluids and fluid dynamics, superfluids, and plas-
mas – all forms of matter that have condensed. But what we have given is the foun-
dation of electronics, electro-optics/optoelectronics, and magneto-electronics.
And at the time of the writing of this text, all of these fields are undergoing a
revolution based in the dimensionality and length scale of electronic solids.

However, it seems a requirement to end a text with some words of wisdom
regarding its use. So, we will add the following.

Technological revolutions do exist. They are triggered by major innovations.
The steam engine, railroad, electricity, and artificial fertilizers are examples.
Economists speak of Kondratiev cycles [1]. It is not clear that one-dimensional
metals, conducting polymers, or organic superconductors will initiate a new
Kondratiev wave, at least not in the way it was originally conceived. Not even a
spray-on room temperature superconductor would do that. Of course, material
scientists are excited when giant conductivity in TTF–TCNQ, solitons in
polyacetylene, superconductivity in cuprates, or mass production of carbon
nanotubes are reported. They will have open-ended discussion meetings till early
in the morning, they will file hundreds of research proposals, and they will write
thousands of publications. But neither the scientists nor the administrators of
funding agencies should be disappointed if five, ten, or even twenty years later,
electrical cables are still made of copper and computer chips and are still made
of silicon. The more a new technology differs from the established methods, the
higher the innovative step is required for its acceptance. A new material that
is just a little bit better will have a hard time replacing conventional materials,
because it is not only competing in regular costs but also has to compensate for
the depreciation of the investments for the old product. Consequently, for quick
success, a new material must have at least an “order-of-magnitude advantage”
somewhere.

For our traditional uses of electronic materials, it doesn’t seem as though
one-dimensional metals and exotic materials represent such a “quantum step”
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in performance.1 A possible exception is light-emitting devices for large-scale
conformal displays. Therefore it is likely that these materials will slowly spread
into economic niches rather than replace existing materials for the application
areas we have discussed.

But what about the real “unknown?” What about the application areas we have
not discussed? As the twenty-first century marches on, it is becoming more clear
that we cannot always predict the direction of technological development. It is
not always just an improvement to old technology – but sometimes it is an avenue
that was never before considered. Some of these avenues may be only accessible
by exotic, topological, or low-dimensional materials. Consider, for instance, that
the overall chemistry and structure of an organic one-dimensional metal is not
that different from many biological molecules. Moving forward, we might expect
this line to blur even more – between biological and technological. As Smalley
once said, “Silicon has rigid bonding requirements and this leads to technology.
Carbon has flexible bonding requirements and this leads to life.” It would seem
then that the very difference between biology and technology lies at the center of
what this book has been about. At the printing of this text, scientists are intro-
ducing stretchable electronics, electronics embedded in tattoos, and electronic
systems that can be integrated into the body’s organs and derive their power from
biobatteries. From the management of disease to a brain–electronic interface,
paradigms are being challenged as to exactly what the next step is in our tech-
nological evolution. Perhaps the most intriguing of all is quantum information
processing and artificial intelligence.

Will these exotic and complex materials systems play a role in this technolog-
ical evolution? We don’t know yet. But one thing is for sure – the explosion of
interest in such systems is still in its infancy, and their potential to change our
lives remains largely unexplored.
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